Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (2): 451-462.doi: 10.12305/j.issn.1001-506X.2025.02.12
• Sensors and Signal Processing • Previous Articles
Kaiming LI1,2,*, Xiaonan DAI1,3, Yuanpeng ZHANG4, Jiawen YAO5, Ying LUO1,2
Received:
2023-12-06
Online:
2025-02-25
Published:
2025-03-18
Contact:
Kaiming LI
CLC Number:
Kaiming LI, Xiaonan DAI, Yuanpeng ZHANG, Jiawen YAO, Ying LUO. Translational compensation and micro-motion feature extraction method of ballistic targets based on dynamic mode decomposition[J]. Systems Engineering and Electronics, 2025, 47(2): 451-462.
1 |
CHEN V C , LI F Y , HO S S , et al. Analysis of micro-Doppler signatures[J]. IEE Proceedings-Radar Sonar and Navigation, 2003, 150 (4): 271- 276.
doi: 10.1049/ip-rsn:20030743 |
2 | CHEN V C , LI F Y , HO S S , et al. Micro-Doppler effect in radar phenomenon, model and simulation study[J]. IEEE Trans.on Aerospace and Electronic Systems, 2006, 42 (1): 2- 21. |
3 |
CHEN V C . Doppler signatures of radar backscattering from objects with micro-motions[J]. IET Signal Processing, 2008, 2 (3): 291- 300.
doi: 10.1049/iet-spr:20070137 |
4 | ZHANG Q , LUO Y , CHEN Y A . Micro-Doppler characteristics of radar targets[M]. London: Elsevier Press, 2016. |
5 | ZHANG Y P , ZHANG Q , KANG L , et al. End-to-end recognition of similar space cone-cylinder targets based on complex-va-lued coordinate attention networks[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5106214. |
6 | ZHANG Y P , ZHANG L , KANG L , et al. Space target classification with corrupted HRRP sequences based on temporal-spatial feature aggregation network[J]. IEEE Trans.on Geoscience and Remote Sensing, 2023, 61, 5100618. |
7 |
ZHANG Y P , XIE Y , KANG L , et al. Feature-level fusion recognition of space targets with composite micromotion[J]. IEEE Trans.on Aerospace and Electronic Systems, 2024, 60 (1): 934- 951.
doi: 10.1109/TAES.2023.3331339 |
8 |
LEE J I , KIM N , MIN S , et al. Space target classification improvement by generating micro-Doppler signatures considering incident angle[J]. Sensors, 2022, 22 (4): 1653.
doi: 10.3390/s22041653 |
9 |
HANIF A , MUAZ M , HASAN A , et al. Micro-Doppler based target recognition with radars: a review[J]. IEEE Sensors Journal, 2022, 22 (4): 2948- 2961.
doi: 10.1109/JSEN.2022.3141213 |
10 |
WANG Z H , LUO Y , LI K M , et al. Micro-Doppler parameters extraction of precession cone-shaped targets based on rotating antenna[J]. Remote Sensing, 2022, 14 (11): 2549.
doi: 10.3390/rs14112549 |
11 |
TIAN X D , BAI X R , XUE R H , et al. Fusion recognition of space targets with micro-motion[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 58 (4): 3116- 3125.
doi: 10.1109/TAES.2022.3145303 |
12 | 罗迎, 柏又青, 张群, 等. 弹道目标平动补偿与微多普勒特征提取方法[J]. 电子与信息学报, 2012, 34 (3): 602- 608. |
LUO Y , BAI Y Q , ZHANG Q , et al. Translational motion compensation and micro-Doppler feature extraction of ballistic targets[J]. Journal of Electronics & Information Technology, 2012, 34 (3): 602- 608. | |
13 | GU F F , FU M H , LIANG B S , et al. Translational motion compensation and micro-Doppler feature extraction of space spinning targets[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (10): 1550- 1554. |
14 |
LI J Q , HE S S , FENG C Q , et al. Method for compensating translational motion of rotationally symmetric target based on local symmetry cancellation[J]. Journal of Systems Engineering and Electronics, 2017, 28 (1): 36- 39.
doi: 10.21629/JSEE.2017.01.05 |
15 | ZHUO Z Y , DU L , LU X F , et al. Ambiguity function based high-order translational motion compensation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 59 (2): 2013- 2019. |
16 | 冯存前, 李江, 黄大荣, 等. 弹道中段不同平动多目标的平动参数估计方法[J]. 电子与信息学报, 2021, 43 (3): 564- 571. |
FENG C Q , LI J , HUANG D R , et al. Estimation method of translational parameters for different translational of ballistic targets in midcourse[J]. Journal of Electronics & Information Technology, 2021, 43 (3): 564- 571. | |
17 |
SCHMID P J . Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656, 5- 28.
doi: 10.1017/S0022112010001217 |
18 | 寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37 (9): 2679- 2689. |
KOU J Q , ZHANG W W , GAO C Q . Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37 (9): 2679- 2689. | |
19 |
SCHMID P J . Dynamic mode decomposition and its variants[J]. Annual Review of Fluid Mechanics, 2022, 54, 225- 254.
doi: 10.1146/annurev-fluid-030121-015835 |
20 |
ROWLEY C W , DAWSON S T M . Model reduction for flow analysis and control[J]. Annual Review of Fluid Mechanics, 2017, 49, 387- 417.
doi: 10.1146/annurev-fluid-010816-060042 |
21 | BERGER E , SASTUBA M , VOGT D , et al. Estimation of perturbations in robotic behavior using dynamic mode decomposition[J]. Advanced Robotics: the International Journal of the Robotics Society of Japan, 2015, 29 (5/6): 331- 343. |
22 | 郑建拥, 魏光辉. 基于多分辨率动态模态分解的电磁信号时频-能量分析[J]. 系统工程与电子技术, 2022, 44 (5): 1468- 1474. |
ZHENG J Y , WEI G H . Time-frequency-energy analysis of electromagnetic signals based on multi-resolution dynamic modal decomposition[J]. Systems Engineering and Electronics, 2022, 44 (5): 1468- 1474. | |
23 |
BRUNTON B W , JOHNSON L A , OJEMANN J G , et al. Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition[J]. Journal of Neuroscience Methods, 2016, 258, 1- 15.
doi: 10.1016/j.jneumeth.2015.10.010 |
24 |
PROCTOR J L , ECKHOFF P A . Discovering dynamic patterns from infectious disease data using dynamic mode decomposition[J]. International Health, 2015, 7 (2): 139- 145.
doi: 10.1093/inthealth/ihv009 |
25 |
ROWLEY C W , MEZIC I , BAGHERI S , et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641, 115- 127.
doi: 10.1017/S0022112009992059 |
26 | 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学报, 2018, 36 (2): 163- 179. |
KOU J Q , ZHANG W W . Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36 (2): 163- 179. | |
27 | DRAGOMIRETSKIY K , ZOSSO D . Variational mode decomposition[J]. IEEE Trans.on Signal Processing, 2013, 62 (3): 531- 544. |
28 |
WU Z H , HUANG N E . Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1 (1): 1- 41.
doi: 10.1142/S1793536909000047 |
29 | KUTZ J N , BRUNTON S L , BRUNTON B W , et al. Dynamic mode decomposition: data-driven modeling of complex systems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2016. |
30 |
TU J H , ROWLEY C W , LUCHTENBERG D M , et al. On dynamic mode decomposition: theory and applications[J]. Journal of Computational Dynamics, 2014, 1 (2): 391- 421.
doi: 10.3934/jcd.2014.1.391 |
31 |
JOVANOVIC M R , SCHMID P J , NICHOLS J W . Sparsity-promoting dynamic mode decomposition[J]. Physics of Fluids, 2014, 26 (2): 024103.
doi: 10.1063/1.4863670 |
[1] | Caiyun WANG, Huiwen ZHANG, Jianing WANG, Yida WU, Yun CHANG. Ballistic midcourse target RCS recognition based on DTCWT-VAE [J]. Systems Engineering and Electronics, 2024, 46(7): 2269-2275. |
[2] | Qianglong WANG, Xiaoguang GAO, Bicong WU, Zijian HU, Kaifang WAN. Review of research on restricted Boltzmann machine and its variants [J]. Systems Engineering and Electronics, 2024, 46(7): 2323-2345. |
[3] | Pengfei YANG, Ling HE, Qian WANG, Ruidi WANG, Mingzhi ZHANG. Interference identification based on mixed signal multidomain feature and Transformer framework [J]. Systems Engineering and Electronics, 2024, 46(6): 2138-2145. |
[4] | Yida WU, Caiyun WANG, Jianing WANG, Xiaofei LI. Infrared multi-sensor fusion recognition method based on ISVM-DS [J]. Systems Engineering and Electronics, 2024, 46(5): 1555-1560. |
[5] | Degui YANG, Daofeng XU. Human behavior recognition method of IR-UWB through wall radar based on time-frequency domain feature fusion [J]. Systems Engineering and Electronics, 2024, 46(3): 849-858. |
[6] | Shuya ZENG, Bin RAO. Ballistic target association method based on dynamic conservation law [J]. Systems Engineering and Electronics, 2024, 46(2): 684-691. |
[7] | Lei WANG, Qian SU, Gao WEI, Jianzhou LI. Micro-Doppler feature extraction method for space coningtarget based on synchro-extracting transform and ridge detection [J]. Systems Engineering and Electronics, 2024, 46(11): 3684-3689. |
[8] | Jiayi CAI, Ping CHU, Luntao ZHUANG, Zhaocheng YANG. Millimeter-wave radar body interference recognition based on spatial attribute features [J]. Systems Engineering and Electronics, 2024, 46(10): 3365-3374. |
[9] | Xiaofeng ZHAO, Jiahui NIU, Chuntong LIU, Yuting XIA. Hyperspectral image classification based on hybrid convolution with three-dimensional attention mechanism [J]. Systems Engineering and Electronics, 2023, 45(9): 2673-2680. |
[10] | Wei FANG, Jingwen LIANG, Hengyang LU. Genetic programming algorithm based on cluster tournament and parent matching [J]. Systems Engineering and Electronics, 2023, 45(8): 2405-2414. |
[11] | Husheng WANG, Baixiao CHEN, Qingzhi YE. Research on anti-chaff jamming method based on measured data [J]. Systems Engineering and Electronics, 2023, 45(7): 2010-2021. |
[12] | Fan YANG, Ping MA, Wei LI, Ming YANG. Intelligent ranking evaluation method of simulation models based on siamese network [J]. Systems Engineering and Electronics, 2023, 45(7): 2060-2068. |
[13] | Danyang LIU, Kun WU, Yongfeng ZHU, Yongjie ZHANG, Jianxiong ZHOU. Robust feature selection method for ground target HRRP recognition [J]. Systems Engineering and Electronics, 2023, 45(12): 3726-3733. |
[14] | Bo LI, Gexi HU, Jianjun SHI, Hengchang LIU, Tao HONG. Fault feature extraction method of rolling bearing based on multiple penalty factors optimization VMD [J]. Systems Engineering and Electronics, 2023, 45(11): 3690-3698. |
[15] | Jia LIU, Qunyu XU, Weishi CHEN. Motion feature extraction and ensembled classification method based on radar tracks for drones [J]. Systems Engineering and Electronics, 2023, 45(10): 3122-3131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||