Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (9): 2862-2869.doi: 10.12305/j.issn.1001-506X.2025.09.09
• Sensors and Signal Processing • Previous Articles
Jiaqi ZHANG1(
), Fang LIU2(
), Cao ZENG1,*(
), Haihong TAO1(
), Shihua ZHAO1(
)
Received:2024-06-17
Online:2025-09-25
Published:2025-09-16
Contact:
Cao ZENG
E-mail:jiaqizhang@stu.xidian.edu.cn;liufang_positive@126.com;czeng@mail.xidian.edu.cn;hhtao@xidian.edu.cn;23021110284@stu.xidian.edu.cn
CLC Number:
Jiaqi ZHANG, Fang LIU, Cao ZENG, Haihong TAO, Shihua ZHAO. Broken track association method for joint radar and photoelectric equipment[J]. Systems Engineering and Electronics, 2025, 47(9): 2862-2869.
| 1 | BLAIR W D, RICE T R, MCDOLE B S, et al. Least-squares approach to asynchronous data fusion[C]//Proc. of the SPIE-Acquisition, Tracking, and Pointing VI, 1992, 1697: 130−141. |
| 2 | 周锐, 申功勋, 房建成, 等. 多传感器融合目标跟踪[J]. 航空学报, 1998, 19 (5): 536- 540. |
| ZHOU R, SHEN G X, FANG J C, et al. Target tracking based on fusion of multi-sensor[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19 (5): 536- 540. | |
| 3 |
CASTELLANOS J A, NEIRA J, TARDÓS J D. Limits to the consistency of EKF-based SLAM[J]. IFAC Proceedings Volumes, 2004, 37 (8): 716- 721.
doi: 10.1016/S1474-6670(17)32063-3 |
| 4 | 谢泽峰, 高宏峰, 任亚飞. 基于UKF的雷达/红外分布式加权融合算法[J]. 导弹与航天运载技术, 2012, 34 (3): 59- 62. |
| XIE Z F, GAO H F, REN Y F. Radar/infrared radiation distributed weighted fusion algorithm based on the unscented Kalman filter[J]. Missiles and Space Vehicles, 2012, 34 (3): 59- 62. | |
| 5 |
JULIER S, UHLMANN J, DURRANT-WHYTE H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Trans. on Automatic Control, 2000, 45 (3): 477- 482.
doi: 10.1109/9.847726 |
| 6 | 李珂, 李醒飞, 杨帆. IMM-UKF算法在两坐标雷达-光电融合跟踪系统中的改进与应用[J]. 激光与光电子学进展, 2016, 53 (12): 245- 254. |
| LI K, LI X F, YANG F. Improvement and application of IMM-UKF algorithm in two coordinate radar-optoelectronic fusion tracking system[J]. Laser & Optoelectronics Progress, 2016, 53 (12): 245- 254. | |
| 7 | 叶瑾, 许枫, 杨娟, 等. 一种基于多传感器的复合量测IMM-EKF数据融合算法[J]. 电子学报, 2020, 48 (12): 2326- 2330. |
| YE J, XU F, YANG J, et. al. A composite measurement IMM-EKF data fusion algorithm based on multi-sensor[J]. Acta Electronica Sinica, 2020, 48 (12): 2326- 2330. | |
| 8 | 唐志一, 蔡颖, 王会. 基于自适应加权算法的多传感器数据融合方法[J]. 智慧信息系统与技术, 2022, 13 (5): 66- 70. |
| TANG Z Y, CAI Y, WANG H. Multi-sensor data fusion method based on adaptive weighting algorithm[J]. Command Information System and Technology, 2022, 13 (5): 66- 70. | |
| 9 | 杨杰, 汪朝群, 陆正刚. 用于目标识别跟踪的雷达/红外成像双模传感器数据融合技术[J]. 航天控制, 1998, 16 (4): 18- 26. |
| YANG J, WANG C Q, LU Z G. Radar/Infrared imaging dual-sensor data fusion techniques for target tracking[J]. Aerospace Control, 1998, 16 (4): 18- 26. | |
| 10 |
SUBEDI S, ZHANG Y D, AMIN M G, et al. Group sparsity based multi-target tracking in passive multi-static radar systems using Doppler-only measurements[J]. IEEE Trans. on Signal Processing, 2016, 64 (14): 3619- 3634.
doi: 10.1109/TSP.2016.2552498 |
| 11 |
WANG J, ZENG Y J, WEI S M, et al. Multi-sensor track-to-track association and spatial registration algorithm under incomplete measurements[J]. IEEE Trans. on Signal Processing, 2021, 69, 3337- 3350.
doi: 10.1109/TSP.2021.3084533 |
| 12 | SUN W F, LI X T, PANG Z T, et al. Track-to-track association based on maximum likelihood estimation for T/R-R composite compact HFSWR[J]. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61, 5102012. |
| 13 |
VERDOLIVA L. Media forensics and deepfakes: an overview[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14 (5): 910- 932.
doi: 10.1109/JSTSP.2020.3002101 |
| 14 | QIU S, ZHAO H K, JIANG N, et al. Multi-sensor information fusion based on machine learning for real applications in human activity recognition: state-of-the-art and research challenges[J]. Information Fusion, 2022, 80, 241- 265. |
| 15 |
PAPI F, KIM D Y. A particle multi-target tracker for superpositional measurements using labeled random finite sets[J]. IEEE Trans. on Signal Processing, 2015, 63 (16): 4348- 4358.
doi: 10.1109/TSP.2015.2443727 |
| 16 |
SUN J, YI W, VARSHNEY P K, et al. Resource scheduling for multi-target tracking in multi-radar systems with imperfect detection[J]. IEEE Trans. on Signal Processing, 2022, 70, 3878- 3893.
doi: 10.1109/TSP.2022.3191800 |
| 17 |
TOKTA A, HOCAOGLU A K. Sensor bias estimation for track-to-track association[J]. IEEE Signal Processing Letters, 2019, 26 (10): 1426- 1430.
doi: 10.1109/LSP.2019.2934596 |
| 18 | 杨春玲, 刘国岁, 倪晋麟. 基于转换坐标卡尔曼滤波算法的雷达目标跟踪[J]. 现代雷达, 1998, 20 (5): 48- 54. |
| YANG C L, LIU G S, NI J L. Converted measurement Kalman filtering algorithm for radar target tracking[J]. Modern Radar, 1998, 20 (5): 48- 54. | |
| 19 | LI K Y, ZHOU G J. Maneuvering target state estimation in range-squared coordinate[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 60 (1): 574- 590. |
| 20 |
WU W H, SUN H M, CAI Y C, et al. Tracking multiple maneuvering targets hidden in the DBZ based on the MM-GLMB filter[J]. IEEE Trans. on Signal Processing, 2020, 68, 2912- 2924.
doi: 10.1109/TSP.2020.2988635 |
| 21 |
YOU P J, DING Z G, QIAN L C, et al. A motion parameter estimation method for radar maneuvering target in Gaussian clutter[J]. IEEE Trans. on Signal Processing, 2019, 67 (20): 5433- 5446.
doi: 10.1109/TSP.2019.2939082 |
| 22 |
ZHOU G J, ZHU B, YE X P. Switch-constrained multiple-model algorithm for maneuvering target tracking[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (4): 4414- 4433.
doi: 10.1109/TAES.2023.3242944 |
| 23 |
ZHANG L, ZHANG J Z, NIU J, et al. Track prediction for HF radar vessels submerged in strong clutter based on MSCNN fusion with GRU-AM and AR model[J]. Remote Sensing, 2021, 13 (11): 2164.
doi: 10.3390/rs13112164 |
| 24 | XIONG W, XU P L, CUI Y Q, et al. Track segment association with dual contrast neural network[J]. IEEE Trans. on Aerospace and Electronic Systems, 2021, 58 (1): 247- 261. |
| 25 |
SUN W F, PANG Z Z, HUANG W M, et al. A multi-stage vessel tracklet association method for compact high-frequency surface wave radar[J]. Remote Sensing, 2022, 14 (7): 1601.
doi: 10.3390/rs14071601 |
| 26 |
SOATTI G, NICOLI M, GARCIA N, et al. Implicit cooperative positioning in vehicular networks[J]. IEEE Trans. on Intelligent Transportation Systems, 2018, 19 (12): 3964- 3980.
doi: 10.1109/TITS.2018.2794405 |
| 27 |
SARKKA S, SARMAVUORI J. Gaussian filtering and smoothing for continuous-discrete dynamic systems[J]. Signal Processing, 2013, 93 (2): 500- 510.
doi: 10.1016/j.sigpro.2012.09.002 |
| 28 |
YAN J K, JIAO H, PU W Q, et al. Radar sensor network resource allocation for fused target tracking: a brief review[J]. Information Fusion, 2022, 86−87, 104- 115.
doi: 10.1016/j.inffus.2022.06.009 |
| 29 |
SCHUHMACHER D, VO B T, VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Trans. on Signal Processing, 2008, 56 (8): 3447- 3457.
doi: 10.1109/TSP.2008.920469 |
| 30 |
RAGHU J, SRIHARI P, THARMARASA R, et al. Comprehensive track segment association for improved track continuity[J]. IEEE Trans. on Aerospace and Electronic Systems, 2018, 54 (5): 2463- 2480.
doi: 10.1109/TAES.2018.2820364 |
| [1] | Mingyu JIANG, Shunsheng ZHANG, Siyao XIAO. SAR target recognition based on lightweight cross-attention convolutional neural network [J]. Systems Engineering and Electronics, 2025, 47(9): 2853-2861. |
| [2] | Kuan YANG, Xiaojian XU. Active polarimetric calibration technique based on parameter extrapolation for ultrawide-band radar [J]. Systems Engineering and Electronics, 2025, 47(8): 2498-2510. |
| [3] | Weihong FU, Wenhong PENG, Naian LIU. SAR image small target detection method with hybrid attention optimization [J]. Systems Engineering and Electronics, 2025, 47(8): 2519-2526. |
| [4] | Kang NI, Wenjie JIA, Minrui ZOU, Zhizhong ZHENG. SAR object detection based on dynamic aggregation network [J]. Systems Engineering and Electronics, 2025, 47(8): 2527-2539. |
| [5] | Juntian BO, Wantian WANG, Yaxing LI, Yunshuo ZHANG, Hengfeng WANG, Jiahao ZHANG, Jin MENG. Analysis and optimization of bandwidth limitation for anti-mainlobe jamming method based on waveform coding [J]. Systems Engineering and Electronics, 2025, 47(8): 2540-2548. |
| [6] | Chen TIAN, Yangyang GUAN, Chunliang DAI, Yu MAO. LPI based line formation design of multiple receivers for single-transmitter multiple-receiver cooperative radar system [J]. Systems Engineering and Electronics, 2025, 47(7): 2176-2184. |
| [7] | Pengcheng ZHANG, Bo PENG, Mingxing FANG. An analysis of jamming method based on the correlation characteristics of modulation sequences [J]. Systems Engineering and Electronics, 2025, 47(6): 1729-1738. |
| [8] | Fengzhuo HUANG, Dong FENG, Yangsheng HUA, Xiaotao HUANG. An improved holographic SAR phase gradient autofocus algorithm [J]. Systems Engineering and Electronics, 2025, 47(6): 1786-1795. |
| [9] | Xinzheng ZHANG, Mengke YAN, Xiaolin ZHU. Noise pseudo-label tolerant semi-supervised SAR target recognition [J]. Systems Engineering and Electronics, 2025, 47(6): 1796-1805. |
| [10] | Qingyun KAN, Jingwei XU, Guisheng LIAO, Weiwei WANG. Clutter modeling and analysis for air-space bistatic radar [J]. Systems Engineering and Electronics, 2025, 47(6): 1806-1815. |
| [11] | Junhao JIA, Xuebin CHEN, Zhangfeng LI, Chunmao YE. ISAR imaging and detection method for space group target [J]. Systems Engineering and Electronics, 2025, 47(6): 1843-1854. |
| [12] | Zhikang LIN, Longfei SHI, Jialei LIU, Jiazhi MA. Scintillation detection scheduling method of netted radar based on deep Q-learning [J]. Systems Engineering and Electronics, 2025, 47(5): 1443-1452. |
| [13] | Zhijie JIANG, Heng SONG, Nan HU, Lanxi DUAN, Ping CAO. Target recognition and classification algorithm of MMW radar in tunnel [J]. Systems Engineering and Electronics, 2025, 47(5): 1453-1460. |
| [14] | Xiangtian MENG, Zhehan JING, Bingxia CAO, Minghui SHA, Yingshen ZHU, Fenggang YAN. Super-resolution target localization method based on multi-dimensional parameter spectrum reconstruction of FDA-MIMO radar [J]. Systems Engineering and Electronics, 2025, 47(5): 1461-1468. |
| [15] | Ning LIU, Fangfang LI, Xinwu LI, Wen HONG. 3D reconstruction of high-rise buildings from SAR combined with footprint and phase information [J]. Systems Engineering and Electronics, 2025, 47(5): 1469-1486. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||