Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (8): 2646-2653.doi: 10.12305/j.issn.1001-506X.2025.08.22
• Systems Engineering • Previous Articles
Received:
2024-04-07
Online:
2025-08-25
Published:
2025-09-04
Contact:
Hongyu FANG
E-mail:1294165864@qq.com
CLC Number:
Hongyu FANG, Zhen ZHANG. Multiple waves missile attack mode based on random process[J]. Systems Engineering and Electronics, 2025, 47(8): 2646-2653.
1 | 林功勋, 滕海. 巡航导弹的特点与防御难点研究 [J]. 军事文摘, 2023(01): 41−45. |
LIN G X, TENG H . Study on the characteristics and defense difficulties of cruise missile [J]. Military Abstracts, 2023 (01): 41−45. | |
2 |
BOGDANOV K V, STEFANOVICH D V. Global missile proliferation: challenges and solutions[J]. Herald of the Russian Academy of Sciences, 2022, 92 (S4): 293- 300.
doi: 10.1134/S1019331622100057 |
3 | RIEBEL T. The complete history of U.S. cruise missiles: from bug to snark to tomahawk[J]. Air Power History, 2020, 67 (3): 62- 63. |
4 |
WANG G H, SUN X F, ZHANG L P, et al. Saturation attack based route planning and threat avoidance algorithm for cruise missiles[J]. Journal of Systems Engineering and Electronics, 2011, 22 (6): 948- 953.
doi: 10.3969/j.issn.1004-4132.2011.06.011 |
5 |
ZENG J, DOU L H, XIN B. Multi-objective cooperative salvo attack against group target[J]. Journal of Systems Science and Complexity, 2018, 31 (1): 244- 261.
doi: 10.1007/s11424-018-7437-9 |
6 |
徐国训, 梁晓龙, 张佳强, 等. 航空集群多目标群攻击路径规划仿真研究[J]. 计算机仿真, 2017, 34 (6): 66- 70,324.
doi: 10.3969/j.issn.1006-9348.2017.06.014 |
XU G X, LIANG X L, ZHANG J Q, et al. Simulation research on path planning of aircraft swarms attacking multi-target group[J]. Computer Simulation, 2017, 34 (6): 66- 70,324.
doi: 10.3969/j.issn.1006-9348.2017.06.014 |
|
7 |
NEWMAN A M, ROSENTHAL R E, SALMERON J, et al. Optimizing assignment of tomahawk cruise missile missions to firing units[J]. Naval Research Logistics, 2011, 58 (3): 281- 294.
doi: 10.1002/nav.20377 |
8 | QIN Z, QI X Y, FU Y L. Terminal guidance based on Bezier curve for climb-and-dive maneuvering trajectory with impact angle constraint[J]. IEEE Access, 2018, 7, 2969- 2977. |
9 | FAN Y H, YAN P P, XU H Y, et al. Lateral control strategy for a hypersonic cruise missile[J]. International Journal of Advanced Robotic Systems, 2017, 14 (2): 1- 10. |
10 | HAO B, LI F, ZHAO J H. Research of trajectory tracking control of cruise missile based on observer[J]. Applied Mechanics and Materials, 2012, 184, 1599- 1602. |
11 |
GUO C, CAI H, HEIJDEN G V D. Guidance and control of a cruise missile flying along a geomagnetic isoline[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228 (7): 1215- 1224.
doi: 10.1177/0954410013489407 |
12 |
LI R, SHI Y J. A time-fuel optimal control problem of a cruise missile based on an improved sliding mode variable structure model[J]. The Anziam Journal, 2009, 51 (2): 261- 276.
doi: 10.1017/S1446181110000088 |
13 | LI Z L, HU J W, BAI J. Preliminary study on the attitude determination system for cruise missile based on IMM-UKF[C]//Proc. of the IEEE Chinese Guidance, Navigation and Control Conference, 2014: 1729−1733. |
14 |
SHI Y J, MA G F. Missile control design based on the linear multiple sliding mode recursive method[J]. The Anziam Journal, 2008, 49 (4): 573- 587.
doi: 10.1017/S1446181108000229 |
15 |
LIN C L, LIN Y P, CHEN K M. On the design of fuzzified trajectory shaping guidance law[J]. ISA Transactions, 2009, 48 (2): 148- 155.
doi: 10.1016/j.isatra.2008.11.001 |
16 |
WANG Y, WANG Z H, WANG C L, et al. Multivariable secure guidance for interceptors against cyber-attacks in guidance commands[J]. Aerospace Science and Technology, 2023, 139, 108378.
doi: 10.1016/j.ast.2023.108378 |
17 | SHAFERMAN V, OSHMAN Y. Stochastic cooperative interception using information sharing based on engagement staggering[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (9): 2127- 2141. |
18 |
HEXNER G, WEISS H. Stochastic approach to optimal guidance with uncertain intercept time[J]. IEEE Trans. on Aerospace and Electronic Systems, 2010, 46 (4): 1804- 1820.
doi: 10.1109/TAES.2010.5595596 |
19 |
CHEN W X, GAO C S, JING W X. Proximal policy optimization guidance algorithm for intercepting near-space maneuvering targets[J]. Aerospace Science and Technology, 2023, 132, 108031.
doi: 10.1016/j.ast.2022.108031 |
20 |
MENQ J Y, TUAN P C, LIU T S. Discrete markov ballistic missile defense system modeling[J]. European Journal of Operational Research, 2007, 178 (2): 560- 578.
doi: 10.1016/j.ejor.2005.12.043 |
21 | LI L Y, FAN C L, XING Q H, et al. Optimal index shooting policy for layered missile defense system[J]. Journal of Systems Engineering and Electronics, 2020, 31 (1): 118- 129. |
22 |
AL-MUTAIRI D K, NANDA A K, SOLAND R M. Monotonicity and comparability in ballistic missile defense systems[J]. Journal of Statistical Planning and Inference, 2011, 141 (7): 2191- 2200.
doi: 10.1016/j.jspi.2011.01.013 |
23 | LI Y S, WANG W L, QIAO Y J, et al. Evaluation on the anti-ship missile penetration ability of the aircraft carrier formation based on queuing theory[C]//Proc. of the International Joint Conference on Computational Sciences and Optimization, 2009: 427−429. |
24 | 王桐, 杨萍, 欧阳海波. 基于马尔可夫链的多波次导弹作战研究[J]. 战术导弹技术, 2011(4): 20−22. |
WANG T, YANG P, OUYANG H B . Investigation into multi-time missile warfare based on Markov chain [J]. Tactical Missile Technology, 2011 (4): 20−22. | |
25 | YANG Y C, ZHANG T X, YI W, et al. Multi-static radar power allocation for multi-stage stochastic task of missile interception[J]. IET Radar, Sonar & Navigation, 2018, 12(5): 540−548. |
26 | MATTILA V, VIRTANEN K, MUTTILAINEN L, et al. Optimizing locations of decoys for protecting surface-based radar against anti-radiation missile with multi-objective ranking and selection[C]//Proc. of the Winter Simulation Conference, 2014: 2319−2330. |
27 |
LILES I J M, ROBBINS M J, LUNDAY B J. Improving defensive air battle management by solving a stochastic dynamic assignment problem via approximate dynamic programming[J]. European Journal of Operational Research, 2023, 305 (3): 1435- 1449.
doi: 10.1016/j.ejor.2022.06.031 |
28 |
LI L Y, LIU F X, LONG G Z, et al. Intercepts allocation for layered defense[J]. Journal of Systems Engineering and Electronics, 2016, 27 (3): 602- 611.
doi: 10.1109/JSEE.2016.00064 |
29 |
FAN C L, FU Q, SONG Y F, et al. A new model of interval-valued intuitionistic fuzzy weighted operators and their application in dynamic fusion target threat assessment[J]. Entropy, 2022, 24 (12): 1825.
doi: 10.3390/e24121825 |
30 | 李英杰, 贾燕军, 李相民. 近程防空导弹拦截巡航导弹的建模与仿真[J]. 兵工自动化, 2010, 29 (12): 38−41. |
LI Y J, JIA Y J, LI X M . Research on modeling and simulation of short range anti-aircraft missile interception for cruise missile [J]. Ordnance Automation, 2010, 29 (12): 38−41. | |
31 |
郑全普, 张凤伟, 霍烁烁. 雷达目标检测概率简化算法及应用分析[J]. 火控雷达技术, 2013, 42 (3): 39- 42.
doi: 10.3969/j.issn.1008-8652.2013.03.009 |
ZHENG Q P, ZHANG F W, HUO S S. A simplified algorithm of target detection probability and its application[J]. Fire Control Radar Technology, 2013, 42 (3): 39- 42.
doi: 10.3969/j.issn.1008-8652.2013.03.009 |
[1] | Kai CHEN, Deping ZHANG. Missile temporal planning method based on graph neural network [J]. Systems Engineering and Electronics, 2025, 47(3): 862-870. |
[2] | Xiangyu LI, Hongzhong HUANG, Xiaoyan XIONG. Reliability modeling of phased mission system considering shocks and phase backups [J]. Systems Engineering and Electronics, 2023, 45(7): 2280-2286. |
[3] | Yi XIONG, Sifeng LIU, Zhigeng FANG, Shujun NAN, Jingru ZHANG, Ruirui SHAO. RMS model for availability evaluation of maritime satellite earth station [J]. Systems Engineering and Electronics, 2023, 45(5): 1570-1579. |
[4] | Zijie MA, Yongjun XIE. Dynamic stealth of cruise missile in system combat [J]. Systems Engineering and Electronics, 2022, 44(9): 2826-2831. |
[5] | Dali ZHANG, Hongwei XIA, Chaoxing ZHANG, Guangcheng MA, Changhong WANG. Improved firefly algorithm and its convergence analysis [J]. Systems Engineering and Electronics, 2022, 44(4): 1291-1300. |
[6] | Luyun QIU, Zhigeng FANG, Liangyan TAO, Qiucheng TAO. Effectiveness evaluation of network SoS based on improved FDNA model [J]. Systems Engineering and Electronics, 2022, 44(12): 3728-3737. |
[7] | Yali ZHAI, Zhihua ZHANG, Songshi SHAO. Reliability modeling of products based on multiple degradation mechanism [J]. Systems Engineering and Electronics, 2021, 43(6): 1714-1720. |
[8] | Yuqi CHEN, Tingxue XU, Jianping HAO, Cheng LU, Zhiqiang LI. Task capability dependency analysis of weapon system of systems based on FDN [J]. Systems Engineering and Electronics, 2021, 43(6): 1721-1728. |
[9] | Mingchi LIN, Qianghui ZHONG, Dawei LI. Combined maintenance and spare supply strategy of unrepairable product [J]. Systems Engineering and Electronics, 2020, 42(6): 1417-1423. |
[10] | FENG Yunwen, LIU Kuijian, XUE Xiaofeng, LIU Yuchang. Joint optimization of redundancy level and spare parts for redundant system based on Markov process [J]. Systems Engineering and Electronics, 2019, 41(4): 919-928. |
[11] | SHI Yuedong, JIN Jiashan, XU Yifan. Multistate reliability analysis and assessment for complex technical system under semi-Markov processes [J]. Systems Engineering and Electronics, 2019, 41(2): 444-452. |
[12] | WANG Chan, WANG Huiquan, JIN Zhonghe, JIN Xin. Method on reliability assessment for ZDPS-2 satellite [J]. Systems Engineering and Electronics, 2019, 41(2): 453-458. |
[13] | FENG Xiao, GUO Linhan, SONG Changhao, KONG Dandan. Steady state availability modeling method for multicomponent equipment group based on CTMC family [J]. Systems Engineering and Electronics, 2018, 40(6): 1405-1410. |
[14] | JIANG Zihan, FANG Zhigeng, RUI Handan, ZHANG Xixi, LIU Sifeng. Bayesian update of system reliability prediction based on incomplete common cause failures [J]. Systems Engineering and Electronics, 2018, 40(4): 954-960. |
[15] | HAN Xiaohai, ZHANG Yaohui, WANG Shaohua, ZHANG Shixin. Evaluation of equipment’s dependability taking maintenance into consideration [J]. Systems Engineering and Electronics, 2017, 39(3): 687-692. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||