Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (4): 1176-1183.doi: 10.12305/j.issn.1001-506X.2025.04.14
• Systems Engineering • Previous Articles Next Articles
Xue YANG1,2, Kailei LIU3, Liying YANG4, Xinhao CUI1, Yiyong XIAO1,*, Rui KANG1
Received:
2024-06-06
Online:
2025-04-25
Published:
2025-05-28
Contact:
Yiyong XIAO
CLC Number:
Xue YANG, Kailei LIU, Liying YANG, Xinhao CUI, Yiyong XIAO, Rui KANG. Research on modeling and solving of forward design optimization of economic life of unmanned combat aircraft[J]. Systems Engineering and Electronics, 2025, 47(4): 1176-1183.
Table 1
Definition of parameters"
参数 | 定义 |
N | 构成装备的模块的集合,i∈N |
ai | 模块i的装机数量 |
Li | 模块i的可选方案集合,j∈Li |
fij | 方案j的研制费用 |
gij | 方案j的生产费用 |
pij | 选择方案j后是否可更换,0/1参数 |
qij | 选择方案j后是否可维修,0/1参数 |
λij | 方案j的可靠性(1/MTBF) |
xij | 方案j的设计寿命 |
cij | 方案j的故障修复费用 |
Cij | 方案j的到寿更换费用 |
b | 无人作战飞机的生产量 |
M | 一个大正数 |
X | 非负连续变量,整机设计寿命(使用小时) |
sij | 0/1变量,表示模块i是否选择方案j |
Ri | 非负连续变量,模块i在X内的更换次数 |
Fi | 非负连续变量,模块i的每飞行小时研制费用 |
Gi | 非负连续变量,模块i的每飞行小时生产费用 |
H′i | 非负连续变量,模块i的每飞行小时修复费用 |
H″i | 非负连续变量,模块i的每飞行小时更换费用 |
Table 2
Curve linearization of y=x-1 replacing the tangent set (ε=1%)"
k | xk | yk | Kk/β | Bk/β |
1 | 1 | 1 | -1 | 2 |
2 | 1.222 2E+00 | 8.181 8E-01 | -6.694 2E-01 | 1.636 4E+00 |
3 | 1.493 8E+00 | 6.694 2E-01 | -4.481 3E-01 | 1.338 8E+00 |
4 | 1.825 8E+00 | 5.477 1E-01 | -2.999 8E-01 | 1.095 4E+00 |
5 | 2.231 5E+00 | 4.481 3E-01 | -2.008 2E-01 | 8.962 5E-01 |
6 | 2.727 4E+00 | 3.666 5E-01 | -1.344 3E-01 | 7.333 0E-01 |
7 | 3.333 5E+00 | 2.999 8E-01 | -8.999 1E-02 | 5.999 7E-01 |
8 | 4.074 3E+00 | 2.454 4E-01 | -6.024 2E-02 | 4.908 8E-01 |
9 | 4.979 7E+00 | 2.008 2E-01 | -4.032 7E-02 | 4.016 3E-01 |
10 | 6.086 3E+00 | 1.643 0E-01 | -2.699 6E-02 | 3.286 1E-01 |
11 | 7.438 8E+00 | 1.344 3E-01 | -1.807 2E-02 | 2.688 6E-01 |
12 | 9.091 8E+00 | 1.099 9E-01 | -1.209 8E-02 | 2.199 8E-01 |
13 | 1.111 2E+01 | 8.999 1E-02 | -8.098 3E-03 | 1.799 8E-01 |
14 | 1.358 2E+01 | 7.362 9E-02 | -5.421 2E-03 | 1.472 6E-01 |
15 | 1.660 0E+01 | 6.024 2E-02 | -3.629 1E-03 | 1.204 8E-01 |
16 | 2.028 9E+01 | 4.928 9E-02 | -2.429 4E-03 | 9.857 7E-02 |
17 | 2.479 7E+01 | 4.032 7E-02 | -1.626 3E-03 | 8.065 4E-02 |
18 | 3.030 8E+01 | 3.299 5E-02 | -1.088 7E-03 | 6.599 0E-02 |
19 | 3.704 3E+01 | 2.699 6E-02 | -7.287 8E-04 | 5.399 2E-02 |
20 | 4.527 4E+01 | 2.208 8E-02 | -4.878 6E-04 | 4.417 5E-02 |
21 | 5.533 5E+01 | 1.807 2E-02 | -3.265 8E-04 | 3.614 3E-02 |
22 | 6.763 2E+01 | 1.478 6E-02 | -2.186 2E-04 | 2.957 2E-02 |
23 | 8.266 2E+01 | 1.209 8E-02 | -1.463 5E-04 | 2.419 5E-02 |
24 | 1.010 3E+02 | 9.898 0E-03 | -9.797 0E-05 | 1.979 6E-02 |
25 | 1.234 8E+02 | 8.098 3E-03 | -6.558 3E-05 | 1.619 7E-02 |
26 | 1.509 2E+02 | 6.625 9E-03 | -4.390 3E-05 | 1.325 2E-02 |
27 | 1.844 6E+02 | 5.421 2E-03 | -2.938 9E-05 | 1.084 2E-02 |
28 | 2.254 5E+02 | 4.435 5E-03 | -1.967 4E-05 | 8.871 1E-03 |
29 | 2.755 5E+02 | 3.629 1E-03 | -1.317 0E-05 | 7.258 1E-03 |
30 | 3.367 9E+02 | 2.969 2E-03 | -8.816 4E-06 | 5.938 5E-03 |
31 | 4.116 3E+02 | 2.429 4E-03 | -5.901 9E-06 | 4.858 8E-03 |
32 | 5.031 0E+02 | 1.987 7E-03 | -3.950 8E-06 | 3.975 3E-03 |
33 | 6.149 0E+02 | 1.626 3E-03 | -2.644 8E-06 | 3.252 6E-03 |
34 | 7.515 5E+02 | 1.330 6E-03 | -1.770 5E-06 | 2.661 2E-03 |
35 | 9.185 6E+02 | 1.088 7E-03 | -1.185 2E-06 | 2.177 3E-03 |
36 | 1.122 7E+03 | 8.907 3E-04 | -7.933 9E-07 | 1.781 5E-03 |
37 | 1.372 2E+03 | 7.287 8E-04 | -5.311 1E-07 | 1.457 6E-03 |
38 | 1.677 1E+03 | 5.962 7E-04 | -3.555 4E-07 | 1.192 5E-03 |
39 | 2.049 8E+03 | 4.878 6E-04 | -2.380 1E-07 | 9.757 2E-04 |
40 | 2.505 3E+03 | 3.991 6E-04 | -1.593 3E-07 | 7.983 1E-04 |
41 | 3.062 0E+03 | 3.265 8E-04 | -1.066 6E-07 | 6.531 7E-04 |
42 | 3.742 5E+03 | 2.672 0E-04 | -7.139 8E-08 | 5.344 1E-04 |
43 | 4.574 1E+03 | 2.186 2E-04 | -4.779 5E-08 | 4.372 4E-04 |
44 | 5.590 6E+03 | 1.788 7E-04 | -3.199 5E-08 | 3.577 4E-04 |
45 | 6.832 9E+03 | 1.463 5E-04 | -2.141 8E-08 | 2.927 0E-04 |
46 | 8.351 4E+03 | 1.197 4E-04 | -1.433 8E-08 | 2.394 8E-04 |
47 | 1.020 7E+04 | 9.797 0E-05 | -9.598 1E-09 | 1.959 4E-04 |
Table 4
Module's selective scheme and cost data (10 thousand USD)"
模块名称 | 方案 | 研制成本fij | 生产成本gij | 是否可更换pij | 是否可维修qij | 故障率λij | 设计寿命xij/h | 故障维修成本cij | 到寿更换成本Cij |
机体结构 | 方案1 | 3 650 | 968 | 0 | 1 | 0.001 0 | 6 000 | 234.4 | 0 |
方案2 | 2 780 | 557 | 0 | 1 | 0.001 2 | 3 500 | 109.5 | 0 | |
发动机 | 方案1 | 1 189 | 225 | 1 | 1 | 0.001 0 | 1 500 | 49.5 | 486.0 |
方案2 | 1 215 | 221 | 1 | 1 | 0.001 3 | 1 800 | 22.1 | 654.2 | |
方案3 | 1 524 | 259 | 1 | 1 | 0.000 9 | 2 100 | 72.5 | 676.0 | |
雷达 | 方案1 | 560 | 24 | 1 | 1 | 0.001 0 | 1 200 | 2.4 | 70.1 |
方案2 | 780 | 25 | 1 | 1 | 0.002 0 | 1 400 | 5.3 | 44.0 | |
航电 | 方案1 | 470 | 23 | 1 | 1 | 0.001 0 | 1 500 | 5.8 | 62.1 |
方案2 | 580 | 21 | 1 | 1 | 0.000 8 | 1 300 | 4.6 | 46.6 | |
方案3 | 680 | 28 | 1 | 1 | 0.001 0 | 2 800 | 4.8 | 48.2 | |
方案4 | 980 | 31 | 1 | 1 | 0.000 9 | 2 000 | 9.3 | 75.9 | |
导航 | 方案1 | 1 450 | 81 | 1 | 1 | 0.001 0 | 1 600 | 17.8 | 160.4 |
方案2 | 1 570 | 90 | 1 | 1 | 0.000 8 | 1 400 | 17.1 | 266.4 | |
起落装置 | 方案1 | 1590 | 55 | 1 | 1 | 0.001 0 | 1200 | 11.0 | 119.4 |
方案2 | 1 200 | 61 | 1 | 1 | 0.001 0 | 1 400 | 15.3 | 170.2 | |
机载1 | 方案1 | 2140 | 140 | 1 | 1 | 0.001 0 | 2 800 | 35.0 | 411.6 |
方案2 | 2 570 | 180 | 1 | 1 | 0.002 0 | 3 000 | 46.8 | 446.4 | |
方案3 | 3 500 | 250 | 1 | 1 | 0.000 5 | 4 000 | 55.0 | 750.0 | |
机载2 | 方案1 | 2 640 | 58 | 1 | 1 | 0.001 0 | 600 | 16.8 | 160.1 |
方案2 | 2 850 | 62 | 1 | 1 | 0.001 0 | 500 | 10.5 | 114.1 | |
方案3 | 2 950 | 70 | 1 | 1 | 0.002 0 | 800 | 9.8 | 174.3 | |
机载3 | 方案1 | 1 300 | 130 | 1 | 1 | 0.001 0 | 1 500 | 31.2 | 331.5 |
方案2 | 1 800 | 180 | 1 | 1 | 0.001 0 | 1 900 | 50.4 | 354.6 |
1 | Office of the secretary of defense cost assessment and program evaluation. Operating and support cost estimating guide[R]. Washington: U.S. Office of the Secretary of Defense Cost Assessment and Program Evaluation, 2020. |
2 |
JIM S , TERRY H , ROB M , et al. Cost modelling for aircraft design optimization[J]. Journal of Engineering Design, 2002, 13 (3): 261- 269.
doi: 10.1080/09544820110108962 |
3 | 肖依永, 常文兵, 周晟瀚, 等. 现代装备系统经济性工程[M]. 北京: 科学出版社, 2022. |
XIAO Y Y , CHANG W B , ZHOU S H , et al. Economic engineering of modern equipment systems-Theory, Method, and Application[M]. Beijing: Science Press, 2022. | |
4 | VALAVANIS K P , VACHTSEVANOS G J . Handbook of unmanned aerial vechicles[M]. Berlin: Springer, 2015. |
5 | 孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报, 2021, 42 (8): 525- 799. |
SUN Z X , YANG S Q , PIAO H Y , et al. A survey of air combat artificial intelligence[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (8): 525- 799. | |
6 | 张昌菊, 单金光. 某智能燃油计量机构正向设计研究[J]. 新技术新工艺, 2021, 7, 35- 42. |
ZHANG C J , SHAN J G . Research on the top-down design of an intelligent fuel metering device[J]. New Technology & New Process, 2021, 7, 35- 42. | |
7 |
LINCOLN J W , MELLIERE R A . Economic life determination for a military aircraft[J]. Journal of Aircraft, 1999, 36 (5): 737- 742.
doi: 10.2514/2.2512 |
8 |
POLITANO D , FROHLICH K . Calculation of stress-dependent life cycle costs of a substation subsystem-demonstrated for controlled energization of unloaded power transformers[J]. IEEE Trans.on Power Delivery, 2006, 21 (4): 2032- 2038.
doi: 10.1109/TPWRD.2006.874120 |
9 |
ATUA K . Reliability-based determination of economic life of marine power plants[J]. Naval Engineers Journal, 2000, 112 (4): 367- 374.
doi: 10.1111/j.1559-3584.2000.tb03343.x |
10 |
HE X F , DONG Y H , SUI F Y , et al. Fleet economic life prediction: a probabilistic approach including load spectrum variation and structural property variation[J]. Engineering Fracture Mechanics, 2016, 163, 189- 205.
doi: 10.1016/j.engfracmech.2016.07.002 |
11 |
YATSENKO Y , HRITONEKO N . Analytics of machine replacement decisions: economic life vs real options[J]. Management Decision, 2022, 60 (2): 471- 487.
doi: 10.1108/MD-12-2019-1704 |
12 |
SINGH D , CHAUDHARY R , KARTHICK A , et al. Economic and life cycle cost analysis of building-integrated photovoltaic system for composite climatic conditions[J]. Environmental Science and Pollution Research, 2024, 31 (9): 13392- 13413.
doi: 10.1007/s11356-023-31781-1 |
13 |
OLAFASAKIN O , MA J Z , BRADSHAW S L , et al. Techno-economic and life cycle assessment of standalone single-stream material recovery facilities in the United States[J]. Waste Management, 2023, 166, 368- 376.
doi: 10.1016/j.wasman.2023.05.011 |
14 |
ZHANG Y J , CAO K , YANG Z , et al. Risk and economic evaluation of aircraft program based on Monte Carlo simulation[J]. Journal of aircraft, 2021, 58 (4): 885- 893.
doi: 10.2514/1.C035945 |
15 |
YAN C L , LIU K G . Theory of economic life prediction and reliability assessment of aircraft structures[J]. Chinese Journal of Aeronautics, 2011, 24 (2): 164- 170.
doi: 10.1016/S1000-9361(11)60020-4 |
16 | TEPLICKA K , KOVAC M , SKVAREKOVA E , et al. Economic life cycle of biomass equipment and its renovation[J]. Tem Journal-technology Education Management Informatics, 2020, 9 (4): 1419- 1425. |
17 |
HU B , CHEN Q P , RAO W , et. al . Economic life prediction of transformer based on repairing profit and decommissioning profit[J]. Journal of Physics: Conference Series, 2019, 1314, 012113.
doi: 10.1088/1742-6596/1314/1/012113 |
18 |
KIM S Y , CHOI B W , OH H S . A study on the economic life cycle decision method of aircraft direct support equipment[J]. Journal of Society of Korea Industrial and Systems Engineering, 2014, 37 (4): 193- 201.
doi: 10.11627/jkise.2014.37.4.193 |
19 | HESS R W, ROMANOFF H P. Aircraft airframe cost estimating relationships: study approach and conclusions, R-3255-AF[R]. Santo Monica: RAND Corp, 1987. |
20 |
郭基联, 虞健飞, 任建军. 装备寿命周期费用估算软件PRICE H剖析[J]. 装备指挥技术学院学报, 2009, 20 (4): 22- 26.
doi: 10.3783/j.issn.1673-0127.2009.04.006 |
GUO J L , YU J F , REN J J . Analysis of PRICE software for LCC estimating of equipments[J]. Journal of the Academy of Equipment Command & Technology, 2009, 20 (4): 22- 26.
doi: 10.3783/j.issn.1673-0127.2009.04.006 |
|
21 |
ASIEDU Y , GU P . Product life cycle cost analysis: state of the art review[J]. International Journal of Production Research, 1998, 36 (4): 883- 908.
doi: 10.1080/002075498193444 |
22 |
CASTAGNE S , CURRAN R , ROTHWELL A , et al. A generic tool for cost estimating in aircraft design[J]. Research in Engineering, 2008, 18 (4): 149- 162.
doi: 10.1007/s00163-007-0042-x |
23 | HARRIS F D. An economic model of U.S. airline operating expense, NASA CR-2005-213476[R]. Maryland: University of Maryland, 2005. |
24 |
CHEN X N , HUANG J , YI M X , et al. Prediction of the development cost of general aviation aircraft[J]. Aircraft Engineering and Aerospace Technology, 2019, 91 (4): 567- 574.
doi: 10.1108/AEAT-09-2018-0248 |
25 | JEROME K, CHOUDRY S A, MICHAEL V. Optimized decision-making in joining selection by alternative-based material and design-oriented changes[C]//Proc. of the 26th CIRP Conference on Life Cycle Engineering: Advancing Industrial Sustainability: West Lafayette, 2019: 4-9. |
26 |
CHEN X , GAO S M , YANG Y D , et al. Multi-level assembly model for top-down design of mechanical products[J]. Computer-aided Design, 2012, 44 (10): 1033- 1048.
doi: 10.1016/j.cad.2010.12.008 |
27 |
MADNI A M . MBSE testbed for rapid, cost-effective prototyping and evaluation of system modeling approaches[J]. Applied Sciences, 2021, 11 (5): 2321.
doi: 10.3390/app11052321 |
28 | 肖依永, 杨军, 周晟瀚, 等. 工程优化——理论、模型与算法[M]. 北京: 北京航空航天大学出版社, 2021. |
XIAO Y Y , YANG J , ZHOU S H , et al. Engineering optimization-theory, model and algorithm[M]. Beijing: Beihang University Press, 2021. | |
29 |
ROGRTD J L , HARTMAN J C . Equipment replacement under continuous and discontinuous technological change[J]. IMA Journal of Management Mathematics, 2005, 16 (1): 23- 26.
doi: 10.1093/imaman/dph027 |
[1] | Liying YANG, Ruiyi YANG, Xinhao CUI, Siyue ZHANG, Lian CHEN, Yiyong XIAO. Research on modeling and solution of complex product batch production routing optimization based on dynamic cost convolution [J]. Systems Engineering and Electronics, 2024, 46(6): 2013-2022. |
[2] | Lu ZHUANG, Zhong LU, Haijing SONG, Jia ZHOU. An optimization method for development assurance level assignment of airborne system [J]. Systems Engineering and Electronics, 2022, 44(8): 2688-2698. |
[3] | Min DU, Zhonghua CHENG, Enzhi DONG. Research on contribution rate evaluation theory of army air defense brigade equipment system [J]. Systems Engineering and Electronics, 2022, 44(1): 209-217. |
[4] | Boyuan LI, Rui KANG, Li YU. Belief reliability modelling and analysis method based on the probability measure [J]. Systems Engineering and Electronics, 2021, 43(7): 1995-2004. |
[5] | FENG Yunwen, LIU Kuijian, XUE Xiaofeng, LIU Yuchang. Joint optimization of redundancy level and spare parts for redundant system based on Markov process [J]. Systems Engineering and Electronics, 2019, 41(4): 919-928. |
[6] | LV Jian-wei, XIE Zong-ren, XU Yi-fan. Requirement’s determining and optimization on fault isolation’s ambiguity group size of weapon system [J]. Systems Engineering and Electronics, 2016, 38(5): 1208-. |
[7] | WU Shi-hui, LIU Xiao-dong, HE Bo, XIE Jiang. #br# Economic life analysis for weapon equipment based on Lambert W function [J]. Systems Engineering and Electronics, 2016, 38(4): 844-851. |
[8] | GENG Jun-bao, NIU Ming-tian. Optimal selection for procurement projects of spare parts based on life cycle cost technology [J]. Journal of Systems Engineering and Electronics, 2013, 35(8): 1687-1691. |
[9] | YUE Qi. Decision method for two sided matching considering agents’ psychological behavior [J]. Journal of Systems Engineering and Electronics, 2013, 35(1): 120-125. |
[10] | ZHANG Heng, HUA Xing-lai, XU Shao-jie. Simulation optimization model of inventory decision for repairable spares systems [J]. Journal of Systems Engineering and Electronics, 2009, 31(6): 1510-1514. |
[11] | SI Yan-jie, WEI Fa-jie. Hybrid multi-attribute decision making based on the intuitionistic fuzzy optimum selecting model [J]. Journal of Systems Engineering and Electronics, 2009, 31(12): 2893-2897. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||