Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (11): 3721-3728.doi: 10.12305/j.issn.1001-506X.2025.11.20
• Systems Engineering • Previous Articles
Haibao YU1,2,*(
), Weidong XU1, Yumou XIE3, Hong WEI1, Yujia YE1, Longhua ZHENG1
Received:2024-11-25
Online:2025-11-25
Published:2025-12-08
Contact:
Haibao YU
E-mail:1016466874@qq.com
CLC Number:
Haibao YU, Weidong XU, Yumou XIE, Hong WEI, Yujia YE, Longhua ZHENG. Optimization method of position camouflage scheme based on dynamic programming[J]. Systems Engineering and Electronics, 2025, 47(11): 3721-3728.
Table 1
Symbol meaning introduction"
| 符号 | 意义 |
| p | 伪装可靠度 |
| i | 阵地工事伪装工程第i个设施 |
| n | 阵地工事伪装工程设施的个数 |
| xi | 第i个设施采用伪装等级x进行伪装 |
| P(i,xi) | 第i个设施采用伪装等级x伪装后伪装可靠度 |
| Si | 第1至第i个工程伪装所用费效比之和 |
| fi | 第i个阶段伪装后的伪装可靠度 |
| c | 伪装设施使用费用 |
| C | 整体伪装方案所需经费 |
| P | 整体阵地工事伪装方案伪装可靠度 |
| P* | 伪装方案优化后的伪装可靠度 |
| A | 战斗行动前需达到最低伪装可靠度 |
| F | 伪装方案优化费效比控制值 |
| H | 采用光学伪装网 |
| I | 采用多谱伪装网 |
| J | 采用植被铺设在光学伪装网 |
| K | 采用植被铺设在多谱伪装网 |
| B | 采用就便材料进行伪装 |
| Z | 采用植被与就便材料结合的方式进行伪装 |
| T | 伪装设施耗费时间 |
| T* | 对T进行归一化后数值 |
| W | 伪装设施消耗人力 |
| W* | 对W进行归一化后数值 |
| D | 伪装设施消耗经费 |
| D* | 对D进行归一化后数值 |
| E | 伪装设施消耗物力 |
| E* | 对E进行归一化后数值 |
| U | 该点效能与费用相等 |
| V | 该点效能与费用相等 |
| O | Max(P-C)时对应的最优方案 |
| g | 伪装设施费效比 |
| G | 整体阵地工事伪装方案费效比 |
| G* | 整体阵地工事伪装方案优化后费效比 |
Table 2
Parameters of position fortification camouflage program"
| 项目名称 | 伪装方案 | 伪装可靠度 | 费效比 |
| 掩蔽(盖)部 | H | 0.82 | 0.22 |
| I | 0.96 | 0.32 | |
| J | 0.89 | 0.33 | |
| K | 0.99 | 0.42 | |
| 交通(堑)壕 | B | 0.79 | 0.23 |
| Z | 0.96 | 0.45 | |
| 单人掩体 | H | 0.81 | 0.21 |
| I | 0.96 | 0.32 | |
| J | 0.89 | 0.35 | |
| K | 0.99 | 0.40 | |
| 火箭筒掩体 | H | 0.80 | 0.23 |
| I | 0.95 | 0.36 | |
| J | 0.88 | 0.37 | |
| K | 0.97 | 0.48 | |
| 机枪掩体 | H | 0.80 | 0.24 |
| I | 0.95 | 0.34 | |
| J | 0.88 | 0.37 | |
| K | 0.98 | 0.40 | |
| 火炮掩体 | H | 0.78 | 0.21 |
| I | 0.92 | 0.32 | |
| J | 0.84 | 0.35 | |
| K | 0.95 | 0.46 | |
| 道路 | B | 0.77 | 0.24 |
| Z | 0.89 | 0.48 |
| 1 | 冯海潮, 张健, 赵志勇, 等. 伪装遮障及其技术发展综述[J]. 科技与创新, 2022, (23): 159- 161. |
| FENG H C, ZHANG J, ZHAO Z Y, et al. Anoverview of camouflage masking and itste-chnological development[J]. Science, Technology and Innovation, 2022, (23): 159- 161. | |
| 2 | MIKKELSEN A, SELJ K G. Spectral reflectance and transmission properties of a multi-layered camouflage net: comparison with natural birch leaves and mathematical models[C]//Proc. of the Conference on Target and Background Signatures, 2020: 1153609. |
| 3 | MIKKELSEN A, SELJ K G. Spectral properties of multilayered oak leaves and a camouflage net: experimental measurements and mathematical modelling[C]//Proc. of the International Society for Optics and Photonics, 2021: 1186505. |
| 4 | DENNING R J. SAAB to provide camouflage net systems to U.S. Defense Department[J]. Defense Daily International, 2009, 11 (22): 33- 34. |
| 5 |
SINGH J, SINGH D. An analytical approach to design camouflage net for microwave absorption[J]. Defence Science Journal, 2019, 69 (5): 469- 473.
doi: 10.14429/dsj.69.14953 |
| 6 | LYNCH J. Reliability, maintainability and supportability: a probabilistic approach[J]. Technometrics, 2012, 37 (1): 122. |
| 7 | CHEN L, SHU P Z, FENG J H, et al. Reliability and maintainability model of support object system for equipment combat unit[J]. Key Engineering Materials, 2011, 1244 (474/476): 816- 821. |
| 8 | PECHT M. Product reliability, maintainability, and supportability handbook[M]. Maryland: CRC Press, 2009. |
| 9 |
OUBOTI D B, RAUL O. Discrete-time, normalized recursive least squares based concurrent learning for online function approximation[J]. Automatica, 2025, 177, 112273.
doi: 10.1016/j.automatica.2025.112273 |
| 10 |
NICHOLAS G, GOME Z, JULIA A, et al. The effect of amplitude normalization technique, walking speed, and reporting metric on whole-body angular momentum and its interpretation during normal gait[J]. Journal of Biomechanics, 2024, 168, 112075.
doi: 10.1016/j.jbiomech.2024.112075 |
| 11 |
HONG J C, LIANG F W, CHEN Y J, et al. A novel battery abnormality diagnosis method using multi-scale normalized coefficient of variation in real-world vehicles[J]. Energy, 2024, 299, 131475.
doi: 10.1016/j.energy.2024.131475 |
| 12 | LIMA F T. A large comparison of normalization methods on time series[J]. Big Data Research, 2023, 34, 232- 235. |
| 13 |
ZHANG B B, SUI W X, HUANG Z W, et al. Normalizing flow based uncertainty estimation for deep regression analysis[J]. Neurocomputing, 2024, 585, 127645.
doi: 10.1016/j.neucom.2024.127645 |
| 14 | 王新志, 陈伟, 祝明坤. 样本数据归一化方式对GPS高程转换的影响[J]. 测绘科学, 2013, 38 (6): 162- 165. |
| WANG X Z, CHEN W, ZHU M K. Effect of sample data normalization method on GPS elevation conversion[J]. Surveying and Mapping Science, 2013, 38 (6): 162- 165. | |
| 15 | 胡江华, 贾其, 李凌, 等. 伪装技术[M]. 北京: 兵器工业出版社, 2020. |
| HU J G, JIA Q, LI L, et al. Camouflage technology[M]. Beijing: Ordnance Industry Press, 2020. | |
| 16 | SELLAMI R, SIVIGNON M. QoL data in CAR-T cost-effectiveness analysis (CEA) in France: what to use?[J]. Value in Health, 2024, 27 (12): S2. |
| 17 |
MELANIE D, JOSHUA T, COHEN P J, et al. Campbell, identifying the influential dynamic inputs in cost-effectiveness analyses[J]. Value in Health, 2025, 28 (7): 1062- 1070.
doi: 10.1016/j.jval.2025.03.016 |
| 18 |
BUTER R, SCHUPPEN V H, STIEGLIS R, et al. Increasing cost-effectiveness of AEDs using algorithms to optimise location[J]. Resuscitation, 2024, 201, 110300.
doi: 10.1016/j.resuscitation.2024.110300 |
| 19 | SU B C, MIN Y J, SUN J K. Integrated topology and power distribution optimization for the shipboard hybrid energy storage system via genetic algorithms and dynamic programming[J]. Ocean Engineering, 2025, 339 (1): 33- 55. |
| 20 | FENG X H, CHEN Y, ZHANG D D. A dynamic programming-based computational intelligence method for optimal pickup and delivery in inter-terminal logistics[J]. Computers & Industrial Engineering, 2025, 206, 11150. |
| 21 |
MA L Y, WEN X J, ZHANG J, et al. Multi-stage decision-making and optimisation model based on dynamic programming[J]. Procedia Computer Science, 2025, 262, 523- 532.
doi: 10.1016/j.procs.2025.05.082 |
| 22 | LAHMAR H, DAHANE M, MOUSS K N, et al. Multi-objective sustainable production planning for a hybrid multi-stage manufacturing remanufacturing system with grade-based classification of recovered and remanufactured products[J]. Journal of Intelligent Manufacturing, 2024, 36 (2): 21- 23. |
| 23 |
ZHANG H Q, ZHAO J, WANG W, et al. Multi-stage dynamic optimisation method for long-term planning of the concentrate ingredient in copper industry[J]. Information Sciences, 2022, 605, 333- 350.
doi: 10.1016/j.ins.2022.05.013 |
| 24 |
TRZASKALIK T. Multiobjective dynamic programming in bipolar multistage method[J]. Annals of Operations Research, 2022, 311 (2): 1259- 1279.
doi: 10.1007/s10479-020-03911-2 |
| 25 | 李新其, 叶喜发. 阵地伪装改造方案的动态规划优化方法[J]. 装备理论与装备技术, 2018, 39 (9): 26- 28. |
| LI X Q, YE X F. A dynamic planning optimisation method for position camouflage modification scheme[J]. Equipment Theory and Equipment Technology, 2018, 39 (9): 26- 28. | |
| 26 | LI Y Z, JIA C Y, LV J N, et al. Evaluation method of camouflage effect based on image feature similarity/fusion degree[J]. Optics & Laser Technology, 2025, 189, 113152. |
| 27 | TOET A, HOGERVORST M A. Review of camouflage assessment techniques[C]//Proc. of the Conference on Target and Background Signatures, 2020: 1153604. |
| 28 |
LI N, LI L, JIAO J C, et al. Research status and development trend of image camouflage effect evaluation[J]. Multimedia Tools and Applications, 2022, 81 (21): 29939- 29953.
doi: 10.1007/s11042-022-12287-3 |
| 29 | LU J Y. A method for detection and evaluation on pattern painting camouflage effect[J]. China Meas-Test, 2007, 33 (2): 67- 69. |
| 30 | AHMAD Z, HAMID D, JABAR A R. Evaluation of camouflage effectiveness using hyper spectral images[J]. Journal of Applied Remote Sensing, 2017, 11 (4): 045008. |
| 31 |
CHENG X P, ZHAO D P, YU Z J. Effectiveness evaluation of infrared camouflage using image saliency[J]. Infrared Physics and Technology, 2018, 95, 213- 221.
doi: 10.1016/j.infrared.2018.11.001 |
| 32 | 汪克亮, 刘志刚, 王艺婷, 等. 基于图像显著性的伪装效果评估[M]//国家安全地球物理丛书(十七)——生态环境与地球物理. 北京: 科学出版社, 2021. |
| WANG K L, LIU Z G, WANG Y T, et al. Evaluation of camouflage effect based on image saliency[M]//National Security Geophysics Series (XVII)—Ecological Environment and Geophysics. Beijing: Science Press, 2021. |
| [1] | Xin GUAN, Ying LIU. Research on multi-attribute decision-making for Pythagorean hesitation fuzzy sets [J]. Systems Engineering and Electronics, 2024, 46(3): 982-991. |
| [2] | Ming SHI, Yuhui GAO, Gong ZHANG. Dynamic planning method based HTN for rover [J]. Systems Engineering and Electronics, 2024, 46(2): 631-639. |
| [3] | Renle ZHENG, Dongyang LI, Wenxue LIU, Jintao WAN, Xueyong LIU, Jinha LI. Hierarchical adaptive minimum sum decoding algorithm for LDPC code [J]. Systems Engineering and Electronics, 2024, 46(12): 4231-4237. |
| [4] | Qitian WAN, Baogang LU, Yaxin ZHAO, Qiuqiu WEN. Autopilot parameter rapid tuning method based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(10): 3190-3199. |
| [5] | Jianguo GUO, Yalu SU. Control system design of adaptive dynamic programming for hypersonic vehicle [J]. Systems Engineering and Electronics, 2021, 43(6): 1628-1635. |
| [6] | Shiyang GAO, Huixu DONG, Runlan TIAN, Xindong ZHANG. Radar emitter signal recognition method based on SRNN+Attention+CNN [J]. Systems Engineering and Electronics, 2021, 43(12): 3502-3509. |
| [7] | Xin ZHOU, Weiping WANG, Yifan ZHU, Tao WANG, Tian JING. Unmanned equipment SoS architecture scheme space searchingmethod based on the sequential allocated mechanism [J]. Systems Engineering and Electronics, 2021, 43(11): 3211-3219. |
| [8] | ZHANG Yuanpeng, ZHENG Daikun, LI Xinzhe, SUN Yongjian. Dynamic programming track-Before-detect algorithm based on hidden Markov model [J]. Systems Engineering and Electronics, 2019, 41(11): 2479-2487. |
| [9] | ZHONG Lei, LI Yong, MOU Zhiying, CHENG Wei, LI Haobin. Detection method for weak target under unknown strong clutter based on DP-TBD [J]. Systems Engineering and Electronics, 2019, 41(1): 43-49. |
| [10] | XIANG Yunwu, ZHANG Wenyi, TIAN Miaomiao. Satellite data transmission integrated scheduling and optimization [J]. Systems Engineering and Electronics, 2018, 40(6): 1288-1293. |
| [11] | CHEN Jianyong, CHEN Changkang, SUN Mingjun. Optimization calculation of continuous search path [J]. Systems Engineering and Electronics, 2018, 40(5): 1155-1159. |
| [12] | YAN Peiyuan, LIU Shu, WANG Jun. Optimization model of air defense disposition based on dynamic programming and genetic algorithm#br# [J]. Systems Engineering and Electronics, 2018, 40(10): 2249-2255. |
| [13] | HAO Zhen-xing, LUO Ji-xun, HU Zhao-hui. Track control of air double detection distributed positioning system [J]. Systems Engineering and Electronics, 2016, 38(8): 1886-1891. |
| [14] | WANG Shuo, ZHANG Yi-qun. Improved dynamic programming algorithm for low signal-to-noise ratio moving target detection [J]. Systems Engineering and Electronics, 2016, 38(10): 2244-2251. |
| [15] | ZHUO Zhen-fu, YANG Yong-jian, FAN Xiao-guang, WANG Sheng-da,NAN Jian-guo, WANG Jiu-chong. Array antennas pattern synthesis based on improved dichotomy particle swarm optimization [J]. Systems Engineering and Electronics, 2015, 37(11): 2460-2466. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||