Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (2): 631-639.doi: 10.12305/j.issn.1001-506X.2024.02.26
• Systems Engineering • Previous Articles
Ming SHI1,2,*, Yuhui GAO1,2, Gong ZHANG1,2
Received:
2022-09-30
Online:
2024-01-25
Published:
2024-02-06
Contact:
Ming SHI
CLC Number:
Ming SHI, Yuhui GAO, Gong ZHANG. Dynamic planning method based HTN for rover[J]. Systems Engineering and Electronics, 2024, 46(2): 631-639.
Table 3
Domain knowledge model of a certain day on Mars"
状态受限事件 | 动作集合 | 状态集合 | 状态转移条件 | 动作持续时间/s |
遥测模式I0 | 定向天线设置A0_1 | [0, 1] | 确定遥测周期 | 10 |
遥测周期修改A0_2 | [0, 1] | 周期修改为5 s | 300 | |
移动盲走模式I1 | 注入模式表A1_1 | [0, 1] | 器上FLASH正常 | 60 |
陀螺零偏修正A1_2 | [0, 1] | 阈值已设置 | 2 | |
移动状态设置A1_3 | [0, 1] | 电量满足移动条件 | 2 | |
火星车移动A1_4 | [0, 1] | GNC已获取控制权 | 620 | |
移动转向轮回零A1_5 | [0, 1] | - | 2 | |
移动断电A1_6 | [0, 1] | - | 60 | |
模式结束A1_7 | [0, 1] | - | 60 | |
遥测模式I0 | 遥测周期复位A0_3 | [0, 1] | 周期修改为300 s | 10 |
1 |
CESTA A , CORTELLESSA G , DENIS M , et al. Mexar2: AI solves mission planner problems[J]. IEEE Intelligent Systems, 2007, 22 (4): 12- 19.
doi: 10.1109/MIS.2007.75 |
2 | FRATINI S, CESTA A. The APSI framework: a platform for timeline synthesis[C]//Proc. of the Workshop on Planning and Scheduling with Timelines, 2012. |
3 |
CESTA A , CORTELLESSA G , FRATINI S , et al. MrSPOCK-steps in developing an end-to-end space application[J]. Computational Intelligence, 2011, 27 (1): 83- 102.
doi: 10.1111/j.1467-8640.2010.00373.x |
4 | CESTA A, CORTELLESSA G, FRATINI S, et al. MrSPOCK: a long-term planning tool for MARS express[C]//Proc. of the 6th International Workshop on Planning and Scheduling for Space, 2009: 83-102. |
5 | JOHNSTON M D. Spike: AI scheduling for hubble space telescope after 18 months of orbital operations[C]//Proc. of the Working Notes AAAI Spring Symposium on Practical Approaches to Scheduling and Planning, 1992. |
6 | BERNARD D, DORAIS G, GAMBLE E, et al. Spacecraft autonomy flight experience: the DS1 remote agent experiment[R]. Washington: American Institute of Aeronautics and Astronautics, 1999. |
7 | MUSCETTOLA N. HSTS: integrating planning and scheduling[R]. Pittsburgh: Carnegie Mellon University Robotics Institute, 1993. |
8 | SHERWOOD R, GOVINDJEE A, YAN D, et al. Using aspen to automate EO-1 activity planning[C]//Proc. of the IEEE Aerospace Conference, 1998. |
9 | SMITH B, SHERWOOD R, GOVINDJEE A, et al. Representing spacecraft mission planning knowledge in ASPEN[C]//Proc. of the Artificial Intelligence Planning Systems Workshop on Knowledge Acquisition, 1998. |
10 | BEDRAX-WEISS T, MCGANN C, BACHMANN A, et al. EUROPA2: user and contributor guide[R]. Washington: National Aeronautics and Space Administration Ames Research Center, 2005. |
11 | BERNARDINI S, SMITH D. Towards search control via dependency graphs in Europa2[C]//Proc. of the 19th International Conference on Automated Planning and Scheduling, 2009. |
12 | BERNARDINI S, SMITH D E. Developing domain-indepen-dent search control for Europa2[C]//Proc. of the International Conference on Automated Planning and Scheduling, 2007. |
13 |
AI-CHANG M , BRESINA J , CHAREST L , et al. Mapgen: mixed-initiative planning and scheduling for the Mars exploration rover mission[J]. IEEE Intelligent Systems, 2004, 19 (1): 8- 12.
doi: 10.1109/MIS.2004.1265878 |
14 | BRESINA J L, MORRIS P H. Mission operations planning: beyond MAPGEN[C]//Proc. of the IEEE 2nd International Conference on Space Mission Challenges for Information Technology, 2006. |
15 | 孙泽洲, 张廷新, 张熇, 等. 嫦娥三号探测器的技术设计与成就[J]. 中国科学(技术科学), 2014, 44 (4): 331- 343. |
SUN Z Z , ZHANG T X , ZHANG H , et al. The technical design and achievements of Chang'E-3 probe[J]. Scientia Sinica(Technologica), 2014, 44 (4): 331- 343. | |
16 | 张辉, 卢皓, 于天一, 等. "祝融号"火星车遥操作技术[J]. 深空探测学报(中英文), 2021, 8 (6): 582- 591. |
ZHANG H , LU H , YU T Y , et al. Teleoperation technology of Zhurong Mars rover[J]. Journal of Deep Space Exploration, 2021, 8 (6): 582- 591. | |
17 | 高宇辉, 师明, 蔡敦波, 等. 一种通用型遥操作任务智能规划方法研究与应用[J]. 深空探测学报(中英文), 2021, 8 (2): 140- 146. |
GAO Y H , SHI M , CAI D B , et al. Research and application of a general teleoperation task intelligent planning method[J]. Journal of Deep Space Exploration, 2021, 8 (2): 140- 146. | |
18 | SACERDOTI E D. The nonlinear nature of plans[R]. California: Stanford University Institute, 1975. |
19 |
YANG Q . Formalizing planning knowledge for hierarchical planning[J]. Computational Intelligence, 1990, 6 (1): 12- 24.
doi: 10.1111/j.1467-8640.1990.tb00126.x |
20 |
KAMBHAMPATI S , HENDLER J A . A validation-structure-based theory of plan modification and reuse[J]. Artificial Intelligence, 1992, 55 (2-3): 193- 258.
doi: 10.1016/0004-3702(92)90056-4 |
21 | EROL K, HENDLER J A, NAU D S. UMCP: a sound and complete procedure for hierarchical task-network planning[C]//Proc. of the International Conference on Artificial Intelligence Planning Systems, 1994: 249-254. |
22 |
EROL K , NAU D S , SUBRAHMANIAN V S . Complexity, decidability and undecidability results for domain-independent planning[J]. Artificial Intelligence, 1995, 76 (1-2): 75- 88.
doi: 10.1016/0004-3702(94)00080-K |
23 | NAU D , AU T C , ILGHAMI O , et al. SHOP2: an HTN planning system[J]. Journal of Artificial Intelligence Research, 2003, 12 (20): 379- 404. |
24 | LI M L , WANG H W , QI C , et al. Handling temporal constraints with preferences in HTN planning for emergency decision-making[J]. Journal of Intelligent & Fuzzy Systems, 2016, 30 (4): 1881- 1891. |
25 |
HUNSBERGER L . Efficient execution of dynamically controllable simple temporal networks with uncertainty[J]. Acta Informatica, 2016, 53 (2): 89- 147.
doi: 10.1007/s00236-015-0227-0 |
26 | TATE A , DALTON J , LEVINE J . O-Plan: a web-based AI planning agent[J]. New Directions in AI Planning, 1996, (31): 247- 262. |
27 | CASTILLO L , FDEZ-OLIVARES J , GARCıA-PEREZ O , et al. SIADEX: an integrated planning framework for crisis action planning[J]. AI Communications, 2005, 18 (4): 257- 268. |
28 |
ALLEN J F . Towards a general theory of action and time[J]. Artificial Intelligence, 1984, 23 (2): 123- 154.
doi: 10.1016/0004-3702(84)90008-0 |
[1] | Kan YI, Jieyong ZHANG, Zhiqiang JIAO, Zhe WANG. Combat task-system function mapping method based on hierarchical task network [J]. Systems Engineering and Electronics, 2023, 45(10): 3183-3191. |
[2] | Jianguo GUO, Yalu SU. Control system design of adaptive dynamic programming for hypersonic vehicle [J]. Systems Engineering and Electronics, 2021, 43(6): 1628-1635. |
[3] | Xin ZHOU, Weiping WANG, Yifan ZHU, Tao WANG, Tian JING. Unmanned equipment SoS architecture scheme space searchingmethod based on the sequential allocated mechanism [J]. Systems Engineering and Electronics, 2021, 43(11): 3211-3219. |
[4] | Zhengxiong LIU, Jikang SI, Gang CHEN, Panfeng HUANG. Interaction control method of virtual simulation for hand-eye coordination in teleoperation [J]. Systems Engineering and Electronics, 2020, 42(5): 1146-1151. |
[5] | Tianhao SHAO, Hongjun ZHANG, Kai CHENG, Chengyou DAI, Xiaohan YU, Ke ZHANG. Review of replanning in hierarchical task network [J]. Systems Engineering and Electronics, 2020, 42(12): 2833-2846. |
[6] | ZHANG Yuanpeng, ZHENG Daikun, LI Xinzhe, SUN Yongjian. Dynamic programming track-Before-detect algorithm based on hidden Markov model [J]. Systems Engineering and Electronics, 2019, 41(11): 2479-2487. |
[7] | ZHONG Lei, LI Yong, MOU Zhiying, CHENG Wei, LI Haobin. Detection method for weak target under unknown strong clutter based on DP-TBD [J]. Systems Engineering and Electronics, 2019, 41(1): 43-49. |
[8] | XIANG Yunwu, ZHANG Wenyi, TIAN Miaomiao. Satellite data transmission integrated scheduling and optimization [J]. Systems Engineering and Electronics, 2018, 40(6): 1288-1293. |
[9] | CHEN Jianyong, CHEN Changkang, SUN Mingjun. Optimization calculation of continuous search path [J]. Systems Engineering and Electronics, 2018, 40(5): 1155-1159. |
[10] | YAN Peiyuan, LIU Shu, WANG Jun. Optimization model of air defense disposition based on dynamic programming and genetic algorithm#br# [J]. Systems Engineering and Electronics, 2018, 40(10): 2249-2255. |
[11] | HAO Zhen-xing, LUO Ji-xun, HU Zhao-hui. Track control of air double detection distributed positioning system [J]. Systems Engineering and Electronics, 2016, 38(8): 1886-1891. |
[12] | LIU Zheng-xiong, HUANG Pan-feng, TAI Jian-sheng. Fast graphics collision detection in predictive simulation for space teleoperation [J]. Systems Engineering and Electronics, 2016, 38(7): 1690-1696. |
[13] | WANG Shuo, ZHANG Yi-qun. Improved dynamic programming algorithm for low signal-to-noise ratio moving target detection [J]. Systems Engineering and Electronics, 2016, 38(10): 2244-2251. |
[14] | FU Xiong, WANG Yi-bo, ZHU Xin-xin, HAN Jin-yu. QoS-aware replica placement in data grids [J]. Systems Engineering and Electronics, 2014, 36(4): 784-788. |
[15] | CAI Wen-xin, FANG Yang-wang, LI Rui, WU You-li. Optimal control for Markov jump linear systems [J]. Journal of Systems Engineering and Electronics, 2012, 34(7): 1458-1462. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||