Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (9): 3231-3238.doi: 10.12305/j.issn.1001-506X.2024.09.34
• Communications and Networks • Previous Articles
Lei WANG, Jin ZHANG, Qiuxuan YE
Received:
2023-08-08
Online:
2024-08-30
Published:
2024-09-12
Contact:
Lei WANG
CLC Number:
Lei WANG, Jin ZHANG, Qiuxuan YE. Spectrum sensing method based on cyclic spectrum and residual neural network in LDACS system[J]. Systems Engineering and Electronics, 2024, 46(9): 3231-3238.
1 |
MAURER N , GRAUPL T , BELLIDO-MANGANELL M A , et al. Flight trial demonstration of secure GBAS via the L-band digital aeronautical communications system (LDACS)[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36 (4): 8- 17.
doi: 10.1109/MAES.2021.3052318 |
2 |
NEJI N , LACERDA R D , AZOULAY A , et al. Survey on the future aeronautical communication system and its development for continental communications[J]. IEEE Trans.on Vehicular Technology, 2013, 62 (1): 182- 191.
doi: 10.1109/TVT.2012.2207138 |
3 | 洪观. 基于压缩感知的L-DACS1宽带频谱感知算法研究[D]. 重庆: 重庆大学, 2017. |
HONG G. Study on broadband spectrum sensing algorithm based on compressed sensing of L-DACS1[D]. Chongqing: Chongqing University, 2017. | |
4 |
ABD-ELATY E , ZEKRY A , EL-AGOOZ S , et al. Cognitive radio techniques for utilizing the primary L-band distance mea-suring equipment for aeronautical communications[J]. IEEE Access, 2020, 8, 124812- 124823.
doi: 10.1109/ACCESS.2020.3007741 |
5 | KOPYTO D, LINDNER S, SCHULZ L, et al. Deep learning-based dynamic spectrum access for coexistence of aeronautical communication systems[C]//Proc. of the IEEE 96th Vehicular Technology Conference, 2022. |
6 |
SHREEJITH S , MATHEW L K , PRASAD V A , et al. Effi cient spectrum sensing for aeronautical LDACS using low-power correlators[J]. IEEE Trans.on Very Large Scale Integration (VLSI) Systems, 2018, 26 (6): 1183- 1191.
doi: 10.1109/TVLSI.2018.2806624 |
7 | MATHEW L K, VINOD A P, MADHUKUMAR A S. A cyclic prefix assisted spectrum sensing method for aeronautical communic ation systems[C]//Proc. of the IEEE International Symposium on Circuits and Systems, 2019. |
8 |
XIE J D , FANG J , LIU C , et al. Deep learning-based spectrum sensing in cognitive radio: a CNN-LSTM approach[J]. IEEE Communications Letters, 2020, 24 (10): 2196- 2200.
doi: 10.1109/LCOMM.2020.3002073 |
9 |
LIU C , WANG J , LIU X M , et al. Deep CM-CNN for spectrum sensing in cognitive radio[J]. IEEE Journal on Selected Areas in Communications, 2019, 37 (10): 2306- 2321.
doi: 10.1109/JSAC.2019.2933892 |
10 |
SSKI K , LEDZINSKI D . ECG signal classification using deep learning techniques based on the PTB-XL dataset[J]. Entropy, 2021, 23 (9): 1121.
doi: 10.3390/e23091121 |
11 |
SINDI H , NOUR M , RAWA M , et al. A novel hybrid deep learning approach including combination of 1D power signals and 2D signal images for power quality disturbance classification[J]. Expert Systems with Applications, 2021, 174, 114785.
doi: 10.1016/j.eswa.2021.114785 |
12 | SHAH P K, SULTANE D, SINGH P. Spectrum sensing mechanism for congnitive radio using deep learning[C]//Proc. of the International Conference on Artificial Intelligence in Information and Communication, 2023. |
13 |
LIN Y , TUYA T , DOU Z , et al. Contour stella image and deep learning for signal recognition in the physical layer[J]. IEEE Trans.on Cognitive Communications and Networking, 2021, 7 (1): 34- 46.
doi: 10.1109/TCCN.2020.3024610 |
14 |
WANG Q , SU B , WANG C X , et al. ConvLSTM based spectrum sensing at very low SNR[J]. IEEE Wireless Communications Letters, 2023, 12 (6): 967- 971.
doi: 10.1109/LWC.2023.3254048 |
15 | ZHANG Z F , LUO H , WANG C , et al. Automatic modulation classification using CNN-LSTM based dual-stream structure[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (11): 3521- 13531. |
16 |
KIM S H , KIM J W , NWADIUGWU W P , et al. Deep learn ing-based robust automatic modulation classification for cognitive radio networks[J]. IEEE Access, 2021, 9, 92386- 92393.
doi: 10.1109/ACCESS.2021.3091421 |
17 |
TEKBIYIK K , AKBUNAR O , EKTI A R , et al. Spectrum sensing and signal identification with deep learning based on spectral correlation function[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (10): 10514- 10527.
doi: 10.1109/TVT.2021.3109236 |
18 |
RAZA A , MEHMOOD A , ULLAH S , et al. Heartbeat sound signal classification using deep learning[J]. Sensors, 2019, 19 (21): 4819.
doi: 10.3390/s19214819 |
19 |
ALTAHERI H , MUHAMMAD G , ALSULAIMAN M , et al. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review[J]. Neural Computing and Applications, 2023, 35, 14681- 14722.
doi: 10.1007/s00521-021-06352-5 |
20 |
束学渊, 汪立新. 联合循环平稳特征PCA与XGBoost的频谱感知[J]. 计算机应用与软件, 2020, 37 (4): 114-118, 126.
doi: 10.3969/j.issn.1000-386x.2020.04.019 |
SHU X Y , WANG L X . Spectrum sensing by combining cyclostationary features PCA with XGBoost[J]. Computer Applications and Software, 2020, 37 (4): 114-118, 126.
doi: 10.3969/j.issn.1000-386x.2020.04.019 |
|
21 |
WANG D , LIN M Y , ZHANG X X , et al. Automatic modulation classification based on CNN-Transformer graph neural network[J]. Sensors, 2023, 23 (16): 7281.
doi: 10.3390/s23167281 |
22 |
葛战, 伍警, 李兵, 等. 基于循环谱和深度神经网络的调制识别算法[J]. 无线电工程, 2022, 52 (10): 1718- 1725.
doi: 10.3969/j.issn.1003-3106.2022.10.005 |
GE Z , WU J , LI B , et al. Modulation recognition based on cyclic spectrum and deep neural network[J]. Radio Engineering, 2022, 52 (10): 1718- 1725.
doi: 10.3969/j.issn.1003-3106.2022.10.005 |
|
23 | 李冬霞, 李思, 刘海涛. 载波偏置测距仪信号的循环平稳特性[J]. 系统工程与电子技术, 2016, 38 (8): 1935- 1938. |
LI D X , LI S , LIU H T . Cyclostationarity of carrier offset distance measure equipment signals[J]. Systems Engineering and Electronics, 2016, 38 (8): 1935- 1938. | |
24 | 张贤达, 保铮. 非平稳信号分析与处理[M]. 北京: 国防工业出版社, 1998. |
ZHANG X D , BAO Z . Analysis and processing of non-stationary signals[M]. Beijing: National Defence Industry Press, 1998. | |
25 | GARDNER W A . Introduction to random process with application to signals and systems[M]. New York: Macmillan, 1989. |
26 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
27 | 陈月, 张希, 艾文宝. 基于残差神经网络的频谱感知算法[J]. 现代电子技术, 2022, 45 (7): 1- 5. |
CHEN Y , ZHANG X , AI W B . Spectrum sensing algorithm based on residual neural network[J]. Modern Electronic Technology, 2022, 45 (7): 1- 5. | |
28 | EUROPEAN UNION, EUROCONTROL. PJ. 14-W2-60 TRL6 final LDACS A/G specification[EB/OL]. [2023-07-08]. https://www.ldacs.com/wp-content/uploads/2023/03/SESAR2020_PJ14-W2-60_TRL6_D3_1_230_3rd_LDACS_AG_Specification_v1.0.0.pdf. |
29 | TAN P S , LIM K M , TAN C H , et al. Pre-trained DenseNet-121 with multilayer perceptron for acoustic event classification[J]. IAENG International Journal of Computer Science, 2023, 50 (1): 51- 62. |
30 | FENG S , ZHAO L P , SHI H Y , et al. One-dimensional VGGNet for high-dimensional data[J]. Applied Soft Computing, 2023, 135, 1568- 4946. |
[1] | Quanquan WANG, Zhihao GU, Chengkun WU, Ting WAN. Cooperative spectrum sensing method based on HHO-SVM for resisting SSDF attacks [J]. Systems Engineering and Electronics, 2024, 46(6): 2146-2154. |
[2] | Han ZOU, Tianqi ZHANG, Kunran MA, Zongfang YANG. Single-mixed signal modulation and recognition algorithm for MIMO-OFDM system based on multi-feature fusion [J]. Systems Engineering and Electronics, 2024, 46(4): 1456-1465. |
[3] | Zengmao CHEN, Kailin WANG, Zhiguo SUN, Rongchen SUN, Sileng AER. Eigenvalue difference spectrum sensing algorithm under Alpha stable distributed noise [J]. Systems Engineering and Electronics, 2023, 45(9): 2949-2955. |
[4] | Rui WANG, Tianqi ZHANG, Zeliang AN, Xueyi WANG, Zhu FANG. Modulation recognition algorithm for MIMO-OFDM system based on joint characteristic parameters and one-dimensional CNN [J]. Systems Engineering and Electronics, 2023, 45(3): 902-912. |
[5] | Zhiguo SUN, Yupeng SHA, Xiaoyan NING. Low detection probability communication technology based on NFM-BOK waveform [J]. Systems Engineering and Electronics, 2023, 45(12): 4030-4039. |
[6] | Shenhao YUAN, Zengmao CHEN, Ming DIAO, Zhiguo SUN, Rongchen SUN. Cooperative spectrum sensing method against SSDF attacks based on composite entropy and evidence theory [J]. Systems Engineering and Electronics, 2023, 45(11): 3663-3670. |
[7] | Xibo TANG, Limin ZHANG, Zhaogen ZHONG. Intrusion traffic detection and identification based on ADASYN and improved residual network [J]. Systems Engineering and Electronics, 2022, 44(12): 3850-3862. |
[8] | Siwei TAN, Bo TANG, Linsen ZHANG, Sen ZHANG. Interference sensing technical solution for frequency hopping electromagnetic fuze [J]. Systems Engineering and Electronics, 2022, 44(11): 3330-3337. |
[9] | He LI, wenjing ZHAO, Minglu JIN. Improved spectrum sensing algorithms based on high order moments of eigenvalues [J]. Systems Engineering and Electronics, 2022, 44(10): 3243-3248. |
[10] | Tianqi ZHANG, Yangliu BAI, Yanping HU, Xiaoyan ZHANG. Multi-parameters blind estimation of AltBOC signal [J]. Systems Engineering and Electronics, 2021, 43(9): 2665-2672. |
[11] | Hong CHANG, Xiaoqiang ZHAO, Haijie SHI. Joint FFT spectrum energy and correlation detection based fast spectrum sensing method and performance analysis [J]. Systems Engineering and Electronics, 2021, 43(5): 1406-1412. |
[12] | Cunxiang XIE, Limin ZHANG, Zhaogen ZHONG. Radar signal recognition based on time-frequency feature extraction and residual neural network [J]. Systems Engineering and Electronics, 2021, 43(4): 917-926. |
[13] | Shengnan YAN, Mingxin LIU. Distributed cooperative compressed spectrum sensing scheme based on support set fusion [J]. Systems Engineering and Electronics, 2020, 42(2): 466-472. |
[14] | Yicong SUN, Runlan TIAN, Huixu DONG, Liang SUN. Polyphase code signal recognition method based on SAMME+ResNet [J]. Systems Engineering and Electronics, 2020, 42(10): 2239-2245. |
[15] | Yuan LUO, Jiaojiao DANG, Zuxun SONG, Baoping WANG. Achieving adaptive compressive spectrum sensing for cognitive radio [J]. Systems Engineering and Electronics, 2020, 42(1): 15-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||