Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (1): 15-22.doi: 10.3969/j.issn.1001-506X.2020.01.03
Previous Articles Next Articles
Yuan LUO1(), Jiaojiao DANG1(
), Zuxun SONG1,2(
), Baoping WANG1,2(
)
Received:
2019-05-06
Online:
2020-01-01
Published:
2019-12-23
Supported by:
CLC Number:
Yuan LUO, Jiaojiao DANG, Zuxun SONG, Baoping WANG. Achieving adaptive compressive spectrum sensing for cognitive radio[J]. Systems Engineering and Electronics, 2020, 42(1): 15-22.
1 |
MITOLA J I , MAGUIRE G Q . Cognitive radio:making software radios more personal[J]. IEEE Personal Communications, 1999, 6 (4): 13- 18.
doi: 10.1109/98.788210 |
2 | ALI A , HAMOUDA W . Advances on spectrum sensing for cognitive radio networks:theory and applications[J]. IEEE Communications Surveys and Tutorials, 2016, 19 (2): 1277- 1304. |
3 |
LIU S C , YANG F , DING W B , et al. Structured compressed sensing based narrowband interference elimination for in-home power line communications[J]. IEEE Trans.on Consumer Electronics, 2017, 63 (1): 10- 18.
doi: 10.1109/TCE.2017.014667 |
4 | LI T , YUAN J , TORLAK M . Network throughput optimization for random access narrowband cognitive radio internet of things (NB-CR-IoT)[J]. IEEE Internet of Things Journal, 2018, 5 (3): 1436- 1448. |
5 |
OH H , NAM H . Energy detection scheme in the presence of burst signals[J]. IEEE Signal Processing Letters, 2019, 26 (4): 582- 586.
doi: 10.1109/LSP.2019.2900165 |
6 |
TONG J W , JIN M , GUO Q H , et al. Energy detection under interference power uncertainty[J]. IEEE Communications Letters, 2017, 21 (8): 1887- 1890.
doi: 10.1109/LCOMM.2017.2705025 |
7 | 黄河, 袁超伟. 基于动态自适应双门限能量检测的序贯协作频谱感知算法[J]. 电子与信息学报, 2018, 40 (5): 25- 31. |
HUANG H , YUAN C W . A sequential cooperative spectrum sensing algorithm based on dynamic adaptive double-threshold energy detection[J]. Journal of Electronics & Information Technology, 2018, 40 (5): 25- 31. | |
8 |
DU Z H , CHEN X F , ZHANG H . Convolutional sparse learning for blind deconvolution and application on impulsive feature detection[J]. IEEE Trans.on Instrumentation and Measurement, 2018, 67 (2): 338- 349.
doi: 10.1109/TIM.2017.2777619 |
9 |
SYED T , SAFDAR G . History-assisted energy-efficient spectrum sensing for infrastructure based cognitive radio networks[J]. IEEE Trans.on Vehicular Technology, 2017, 66 (3): 2462- 2473.
doi: 10.1109/TVT.2016.2585763 |
10 |
DU Z H , CHEN X F , ZHANG H , et al. Compressed-sensing-based periodic impulsive feature detection for wind turbine systems[J]. IEEE Trans.on Industrial Informatics, 2017, 13 (6): 2933- 2945.
doi: 10.1109/TII.2017.2666840 |
11 |
AXELL E , LEUS G , LARSSON E G , et al. Spectrum sensing for cognitive radio:state-of-the-art and recent advances[J]. IEEE Signal Processing Magazine, 2012, 29 (3): 101- 116.
doi: 10.1109/MSP.2012.2183771 |
12 | JIANG J , SUN H J , BAGLEE D , et al. Achieving autonomous compressive spectrum sensing for cognitive radios[J]. IEEE Trans.on Vehicular Technology, 2015, 65 (3): 1281- 1291. |
13 |
DONOHO D L . Compressed sensing[J]. IEEE Trans.on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582 |
14 | MCHENRY M.NSF spectrum occupancy measurements project summary[R].Vienna, USA: Shared Spectrum Company, 2005. |
15 | LIU J Y , LING C . Adaptive compressed sensing using intra-scale variable density sampling[J]. IEEE Sensors Journal, 2017, 18 (2): 547- 558. |
16 |
XIONG T Y , LI H B , QI P H , et al. Pre-decision for wideband spectrum sensing with sub-Nyquist sampling[J]. IEEE Trans.on Vehicular Technology, 2017, 66 (8): 6908- 6920.
doi: 10.1109/TVT.2017.2656940 |
17 |
王雅婧, 罗明. 宽带LFM信号的压缩感知测向算法[J]. 系统工程与电子技术, 2018, 40 (12): 2649- 2654.
doi: 10.3969/j.issn.1001-506X.2018.12.05 |
WANG Y J , LUO M . Compressed sensing direction finding algorithm for wideband LFM signals[J]. Systems Engineering and Electronics, 2018, 40 (12): 2649- 2654.
doi: 10.3969/j.issn.1001-506X.2018.12.05 |
|
18 |
CHEN J Y , PAN X Y , XU L T , et al. Deception jamming against ISAR with coupled two-dimensional compressive sensing via sub-Nyquist sampling[J]. IEEE Access, 2018, 6, 55693- 55700.
doi: 10.1109/ACCESS.2018.2872056 |
19 | 何兴宇, 童宁宁, 胡晓伟, 等. 基于多观测向量序列降采样恢复的稀疏矩阵重构[J]. 系统工程与电子技术, 2018, 40 (2): 250- 254. |
HE X Y , TONG N N , HU X W , et al. Sparse matrix reconstruction based on sequential down-sampling recovery of multiple measurement vectors[J]. Systems Engineering and Electronics, 2018, 40 (2): 250- 254. | |
20 | TIAN Z, GIANNAKIS G B. Compressed sensing for wideband cognitive radios[C]//Proc.of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2007, DOI: 10.1109/ICASSP.2007.367330. |
21 | WANG Y, TIAN Z, FENG C Y. A two-step compressed spectrum sensing scheme for wideband cognitive radios[C]//Proc.of the IEEE Global Telecommunications Conference, 2010, DOI: 10.1109/GLOCOM.2010.5683246. |
22 |
LEINONEN M , CODREANU M , JUNTTI M . Sequential compressed sensing with progressive signal reconstruction in wireless sensor networks[J]. IEEE Trans.on Wireless Communications, 2015, 14 (3): 1622- 1635.
doi: 10.1109/TWC.2014.2371017 |
23 |
ZHAO J , LIU Q , WANG X , et al. Scheduling of collaborative sequential compressed sensing over wide spectrum band[J]. IEEE/ACM Trans.on Networking, 2018, 26 (1): 492- 505.
doi: 10.1109/TNET.2017.2787647 |
24 | 盖建新, 杜昊辰, 刘琦, 等. 基于采样值随机压缩矩阵核空间的亚奈奎斯特采样重构算法[J]. 电子与信息学报, 2019, 41 (2): 484- 491. |
GAI J X , DU H C , LIU Q , et al. Sub-Nyquist sampling recovery algorithm based on kernel space of the random-compression sampling value matrix[J]. Journal of Electronics and Information Technology, 2019, 41 (2): 484- 491. | |
25 |
ZHAO Y J , HU Y H , LIU J J . Random triggering-based sub-Nyquist sampling system for sparse multiband signal[J]. IEEE Trans.on Instrumentation and Measurement, 2017, 66 (7): 1789- 1797.
doi: 10.1109/TIM.2017.2665983 |
26 |
LIU C J , WANG H J , ZHANG J , et al. Wideband spectrum sensing based on single-channel sub-Nyquist sampling for cognitive radio[J]. Sensors, 2018, 18 (7)
doi: 10.3390/s18072222 |
27 |
DAVENPORT M A , WAKIN M B . Analysis of orthogonal matching pursuit using the restricted isometry property[J]. IEEE Trans.on Information Theory, 2010, 56 (9): 4395- 4401.
doi: 10.1109/TIT.2010.2054653 |
28 |
CANDES E J , ROMBERG J , TAO T . Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans.on Information Theory, 2006, 52 (2): 489- 509.
doi: 10.1109/TIT.2005.862083 |
29 |
TROPP J A , GILBERT A C . Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans.on Information Theory, 2007, 53 (12): 4655- 4666.
doi: 10.1109/TIT.2007.909108 |
30 |
NEEDELL D , TROPP J A . CoSaMP:iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26 (3): 301- 321.
doi: 10.1016/j.acha.2008.07.002 |
31 | TROPP J A , LASKA J N , DUARTE M F , et al. Beyond Nyquist:efficient sampling of sparse bandlimited signals[J]. IEEE Trans.on Information Theory, 2009, 56 (1): 520- 544. |
32 |
ZENG F Z , LI C , TIAN Z . Distributed compressive spectrum sensing in cooperative multihop cognitive networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5 (1): 37- 48.
doi: 10.1109/JSTSP.2010.2055037 |
33 |
WANG Y , TIAN Z , FENG C Y . Sparsity order estimation and its application in compressive spectrum sensing for cognitive radios[J]. IEEE Trans.on Wireless Communications, 2012, 11 (6): 2116- 2125.
doi: 10.1109/TWC.2012.050112.110505 |
[1] | He TIAN, Chunzhu DONG, Hongcheng YIN. Radar target three-dimensional scattering centers inversion based on compressed sensing and frequency sparsity [J]. Systems Engineering and Electronics, 2022, 44(9): 2783-2790. |
[2] | He LI, wenjing ZHAO, Minglu JIN. Improved spectrum sensing algorithms based on high order moments of eigenvalues [J]. Systems Engineering and Electronics, 2022, 44(10): 3243-3248. |
[3] | Zhaojun WU, Limin ZHANG, Zhaogen ZHONG. Recognition of convolutional interleaver at low SNR [J]. Systems Engineering and Electronics, 2021, 43(2): 546-554. |
[4] | Bo SONG, Wei YE, Xianghui MENG. Review of multi-agent reinforcement learning based dynamic spectrum allocation method [J]. Systems Engineering and Electronics, 2021, 43(11): 3338-3351. |
[5] | Qing LING, Wenjun YAN, Limin ZHANG, Keyuan YU. Blind signal recognition method of AL-OFDM and SM-OFDM space-frequency block codes [J]. Systems Engineering and Electronics, 2021, 43(1): 19-25. |
[6] | Qiang HUANG, Jianguo YU, Pengfei SHI. Complex ballistic group targets tracking based on adaptive compressed sensing [J]. Systems Engineering and Electronics, 2020, 42(8): 1710-1717. |
[7] | Shengnan YAN, Mingxin LIU. Distributed cooperative compressed spectrum sensing scheme based on support set fusion [J]. Systems Engineering and Electronics, 2020, 42(2): 466-472. |
[8] | Hui ZHAO, Lufa FANG, Tianqi ZHANG, Zhiwei LI, Xianming XU. Image compressive sensing reconstruction via group sparse representation and weighted total variation [J]. Systems Engineering and Electronics, 2020, 42(10): 2172-2180. |
[9] | Luo ZUO, Jun WANG, Gang CHEN, Yaqi DENG, Yuanyuan WEN. Super-resolution DOA estimation method of passive bistatic radar based on TLS-CS [J]. Systems Engineering and Electronics, 2020, 42(1): 61-66. |
[10] | MIAO Chenglin, LI Tong, LYU Jun, CHANG Cheng. Research on dynamic frequency hopping channel access algorithm based on hidden Markov model [J]. Systems Engineering and Electronics, 2019, 41(8): 1873-1880. |
[11] | ZHANG Mengbo, WANG Lunwen, FENG Yanqing. Distributed cooperative spectrum sensing method based on reinforcement learning and consensus fusion [J]. Systems Engineering and Electronics, 2019, 41(3): 486-492. |
[12] | ZHANG Mengbo, WANG Lunwen, FENG Yanqing . Coalitional game based distributed cooperative spectrum sensing method in cognitive wireless network [J]. Systems Engineering and Electronics, 2019, 41(2): 236-243. |
[13] | ZHU Sining, ZHANG Licheng, NING Jinzhong, JIN Minglu. Threshold multipath sparsity adaptive image reconstruction algorithm based on compressed sensing [J]. Systems Engineering and Electronics, 2019, 41(10): 2191-2197. |
[14] | YUAN Hui, WANG Chunyang, AN Lei, LI Xin. ECCM scheme against interrupted sampling repeater jamming based on compressed sensing signal reconstruction [J]. Systems Engineering and Electronics, 2018, 40(4): 717-725. |
[15] | ZHANG Haibo, ZHANG Jin, LI Fangwei. User selected collaborative spectrum sensing based on energy detection [J]. Systems Engineering and Electronics, 2018, 40(3): 658-664. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||