Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (10): 2172-2180.doi: 10.3969/j.issn.1001-506X.2020.10.04
Previous Articles Next Articles
Hui ZHAO1,2(), Lufa FANG1,2(
), Tianqi ZHANG1,2(
), Zhiwei LI1,2(
), Xianming XU1,2(
)
Received:
2019-12-07
Online:
2020-10-01
Published:
2020-09-19
CLC Number:
Hui ZHAO, Lufa FANG, Tianqi ZHANG, Zhiwei LI, Xianming XU. Image compressive sensing reconstruction via group sparse representation and weighted total variation[J]. Systems Engineering and Electronics, 2020, 42(10): 2172-2180.
Table 1
PSNR of reconstructed image under different sampling rate"
测试图像 | 采样率 | PSNR/dB | ||||
NLRTV | GSR | ALSB | GSR-NCR | GSR-WTV | ||
House | 0.1 | 29.68 | 33.76 | 32.52 | 32.01 | 34.00 |
0.2 | 33.06 | 36.78 | 35.73 | 36.57 | 37.32 | |
0.3 | 35.53 | 38.93 | 38.15 | 39.38 | 39.52 | |
0.4 | 37.21 | 40.60 | 40.14 | 41.12 | 41.15 | |
Barbara | 0.1 | 22.48 | 29.99 | 29.09 | 27.99 | 30.16 |
0.2 | 24.46 | 34.59 | 31.61 | 33.93 | 34.78 | |
0.3 | 25.62 | 36.92 | 34.73 | 37.19 | 37.31 | |
0.4 | 27.90 | 38.99 | 37.26 | 39.20 | 39.21 | |
Monarch | 0.1 | 24.12 | 25.29 | 24.12 | 23.72 | 26.02 |
0.2 | 27.35 | 29.55 | 28.23 | 28.64 | 31.07 | |
0.3 | 29.84 | 33.17 | 31.48 | 33.53 | 34.16 | |
0.4 | 31.76 | 36.07 | 34.33 | 36.88 | 36.99 | |
Starfish | 0.1 | 22.81 | 23.60 | 23.23 | 22.87 | 24.41 |
0.2 | 25.75 | 29.42 | 27.38 | 27.23 | 29.62 | |
0.3 | 27.96 | 33.00 | 30.26 | 31.75 | 32.90 | |
0.4 | 30.67 | 35.63 | 33.29 | 35.34 | 35.77 | |
Average | 0.1 | 24.77 | 28.16 | 27.24 | 26.64 | 28.64 |
0.2 | 28.21 | 32.58 | 30.73 | 31.59 | 33.20 | |
0.3 | 29.73 | 35.49 | 33.66 | 35.46 | 36.00 | |
0.4 | 31.89 | 37.82 | 36.26 | 38.13 | 38.34 |
Table 2
SSIM of reconstructed image under different sampling rate"
测试图像 | 采样率 | SSIM | ||||
NLRTV | GSR | ALSB | GSR-NCR | GSR-WTV | ||
House | 0.1 | 0.833 1 | 0.869 5 | 0.859 2 | 0.856 8 | 0.883 2 |
0.2 | 0.881 2 | 0.913 6 | 0.914 3 | 0.913 9 | 0.932 5 | |
0.3 | 0.910 4 | 0.940 3 | 0.946 6 | 0.955 3 | 0.957 0 | |
0.4 | 0.930 8 | 0.958 2 | 0.962 5 | 0.968 0 | 0.968 7 | |
Barbara | 0.1 | 0.616 4 | 0.858 2 | 0.821 8 | 0.854 1 | 0.903 0 |
0.2 | 0.741 8 | 0.938 3 | 0.927 5 | 0.942 7 | 0.957 5 | |
0.3 | 0.809 8 | 0.963 2 | 0.959 9 | 0.971 1 | 0.973 2 | |
0.4 | 0.880 5 | 0.975 1 | 0.973 3 | 0.980 3 | 0.980 9 | |
Monarch | 0.1 | 0.780 7 | 0.857 1 | 0.815 9 | 0.779 7 | 0.878 0 |
0.2 | 0.882 7 | 0.929 2 | 0.908 0 | 0.904 5 | 0.944 6 | |
0.3 | 0.925 4 | 0.954 5 | 0.945 0 | 0.957 9 | 0.965 8 | |
0.4 | 0.945 6 | 0.968 8 | 0.967 0 | 0.975 1 | 0.977 0 | |
Starfish | 0.1 | 0.674 6 | 0.756 1 | 0.722 2 | 0.702 8 | 0.756 1 |
0.2 | 0.802 3 | 0.869 5 | 0.843 9 | 0.837 5 | 0.892 0 | |
0.3 | 0.869 6 | 0.920 6 | 0.911 9 | 0.917 9 | 0.937 0 | |
0.4 | 0.918 9 | 0.947 9 | 0.947 6 | 0.953 9 | 0.961 7 | |
Average | 0.1 | 0.726 2 | 0.835 2 | 0.804 8 | 0.798 3 | 0.855 0 |
0.2 | 0.827 0 | 0.912 6 | 0.898 4 | 0.899 6 | 0.931 6 | |
0.3 | 0.878 8 | 0.944 6 | 0.940 8 | 0.950 5 | 0.958 2 | |
0.4 | 0.918 9 | 0.962 5 | 0.962 6 | 0.969 3 | 0.972 0 |
1 |
DONOHO D L . Compressed sensing[J]. IEEE Trans.on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582 |
2 | 焦李成, 杨淑媛, 刘芳, 等. 压缩感知回顾与展望[J]. 电子学报, 2011, 39 (7): 1651- 1662. |
JIAO L C , YANG S Y , LIU F , et al. Retrospect and prospect of compressed sensing[J]. Journal of Electronics, 2011, 39 (7): 1651- 1662. | |
3 |
CRAKE C , SEAN F , MARSAC L , et al. Passive acoustic mapping and B-mode ultrasound imaging utilizing compressed sen-sing for real-time monitoring of cavitation-enhanced drug delivery[J]. The Journal of the Acoustical Society of America, 2018, 143 (3): 1872.
doi: 10.1121/1.5036143 |
4 | 樊晓宇, 练秋生. 基于双稀疏模型的压缩感知核磁共振图像重构[J]. 生物医学工程学杂志, 2018, 35 (5): 688- 696. |
FAN X Y , LIAN Q S . Compressed perceptual MRI image reconstruction based on double sparse model[J]. Journal of Biomedical Engineering, 2018, 35 (5): 688- 696. | |
5 |
MARKUS L , MARIAN C , MARKKU J . Distributed distortion-rate optimized compressed sensing in wireless sensor networks[J]. IEEE Trans.on Communications, 2018, 66 (4): 1609- 1623.
doi: 10.1109/TCOMM.2018.2790385 |
6 | 陈善雄, 何中市, 熊海灵, 等. 一种基于压缩感知的无线传感信号重构算法[J]. 计算机学报, 2015, 38 (3): 614- 624. |
CHEN S X , HE Z S , XIONG H L , et al. A reconstruction algorithm of wireless sensor signal based on compressed sensing[J]. Journal of Computer Science, 2015, 38 (3): 614- 624. | |
7 | ZHANG L , LI B L , XIE V , et al. CSVE radar:high-range-resolution radar using compressive sensing and virtual expanding technique[J]. IET Radar, Sonar & Navigation, 2017, 11 (6): 1002- 1010. |
8 | 李佳, 高志荣, 熊承义, 等. 加权结构组稀疏表示的图像压缩感知重构[J]. 通信学报, 2017, 38 (2): 196- 202. |
LI J , GAO Z R , XIONG C Y , et al. Image compression and perception reconstruction based on sparse representation of weighted structure group[J]. Journal of Communications, 2017, 38 (2): 196- 202. | |
9 |
RUBINSTEIN R , BRUCKSTEIN A M , ELAD M . Dictionaries for sparse representation modeling[J]. Proceedings of the IEEE, 2010, 98 (6): 1045- 1057.
doi: 10.1109/JPROC.2010.2040551 |
10 | HONG T , ZHU Z H . Online learning sensing matrix and sparsifying dictionary simultaneously for compressive sensing[J]. Signal Processing, 2018, 153 (12): 188- 196. |
11 |
ZHA Z Y , ZHANG X G , WANG Q , et al. Group-based sparse representation for image compressive sensing reconstruction with non-convex regularization[J]. Neurocomputing, 2018, 296, 55- 63.
doi: 10.1016/j.neucom.2018.03.027 |
12 |
ZHANG J , ZHAO D B , GAO W . Group-based sparse representation for image restoration[J]. IEEE Trans.on Image Processing, 2014, 23 (8): 3336- 3351.
doi: 10.1109/TIP.2014.2323127 |
13 | FENG L , SUN H , FENG L , et al. Blind compressive sensing method via local sparsity and nonlocal similarity[J]. Journal of Nanjing University of Science & Technology, 2017, 41 (4): 399- 404. |
14 | YU J, DONG S M.Nonlocal variational method application for image denoising[C]//Proc.of the 7th IEEE International Confe-rence on Signal Processing, Communications and Computing, 2018. |
15 |
FENG L , SUN H J , SUN Q S , et al. Compressive sensing via nonlocal low-rank tensor regularization[J]. Neurocomputing, 2016, 216, 45- 60.
doi: 10.1016/j.neucom.2016.07.012 |
16 | BUADES A, COLL B, MORUL J M.A non-local algorithm for image denoising[C]//Proc.of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 60-65. |
17 | RUDIN L I, OSHER S, FATEMI E.Nonlinear total variation based noise removal algorithms[C]//Proc.of the 11th Annual International Conference of the Center for Nonlinear Studies, 1992: 259-268. |
18 |
CANDES E J , WAKIN M B , BOYD S P . Enhancing sparsity by reweighted ℓ1 minimization[J]. Journal of Fourier Analysis & Applications, 2008, 14 (5/6): 877- 905.
doi: 10.1007/s00041-008-9045-x |
19 | 陈建, 苏凯雄, 杨秀芝, 等. 基于变分模型的块压缩感知重构算法[J]. 通信学报, 2016, 37 (1): 100- 109. |
CHEN J , SU K X , YANG X Z , et al. Block compression perceptual reconstruction algorithm based on variational model[J]. Journal of Communications, 2016, 37 (1): 100- 109. | |
20 | ZHANG J, LIU S H, XIONG R Q, et al.Improved total varia-tion based image compressive sensing recovery by nonlocal regularization[C]//Proc.of the IEEE International Symposium on Circuits & Systems, 2013: 2836-2839. |
21 |
WANG T , NAKAMOTO K , ZHANG H Y , et al. Reweighted anisotropic total variation minimization for limited-angle CT reconstruction[J]. IEEE Trans.on Nuclear Science, 2017, 64 (10): 2742- 2760.
doi: 10.1109/TNS.2017.2750199 |
22 |
BLUMENSATH T . Accelerated iterative hard thresholding[J]. Signal Processing, 2012, 92, 752- 756.
doi: 10.1016/j.sigpro.2011.09.017 |
23 |
GOLDSREIN T , OSHER S . The split Bregman method for L1-regularized problems[J]. SIAM Journal on Image Sciences, 2009, 2 (2): 323- 343.
doi: 10.1137/080725891 |
24 | ZHANG M L, DESROSIERS C, ZHANG C M.Effective compressive sensing via reweighted total variation and weighted nuclear norm regularization[C]//Proc.of the IEEE International Conference on Acoustics, 2017: 1802-1806. |
25 |
LI C B , YIN W T , JIANG H , et al. An efficient augmented Lagrangian method with applications to total variation minimization[J]. Computational Optimization and Applications, 2013, 56 (3): 507- 530.
doi: 10.1007/s10589-013-9576-1 |
26 |
ZHANG J , ZHAO C , ZHAO D B , et al. Image compressive sensing recovery using adaptively learned sparsifying basis via L0 minimization[J]. Signal Processing, 2014, 103, 114- 126.
doi: 10.1016/j.sigpro.2013.09.025 |
[1] | He TIAN, Chunzhu DONG, Hongcheng YIN. Radar target three-dimensional scattering centers inversion based on compressed sensing and frequency sparsity [J]. Systems Engineering and Electronics, 2022, 44(9): 2783-2790. |
[2] | Qiang HUANG, Jianguo YU, Pengfei SHI. Complex ballistic group targets tracking based on adaptive compressed sensing [J]. Systems Engineering and Electronics, 2020, 42(8): 1710-1717. |
[3] | Shengnan YAN, Mingxin LIU. Distributed cooperative compressed spectrum sensing scheme based on support set fusion [J]. Systems Engineering and Electronics, 2020, 42(2): 466-472. |
[4] | Yuan LUO, Jiaojiao DANG, Zuxun SONG, Baoping WANG. Achieving adaptive compressive spectrum sensing for cognitive radio [J]. Systems Engineering and Electronics, 2020, 42(1): 15-22. |
[5] | Luo ZUO, Jun WANG, Gang CHEN, Yaqi DENG, Yuanyuan WEN. Super-resolution DOA estimation method of passive bistatic radar based on TLS-CS [J]. Systems Engineering and Electronics, 2020, 42(1): 61-66. |
[6] | ZHU Sining, ZHANG Licheng, NING Jinzhong, JIN Minglu. Threshold multipath sparsity adaptive image reconstruction algorithm based on compressed sensing [J]. Systems Engineering and Electronics, 2019, 41(10): 2191-2197. |
[7] | YUAN Hui, WANG Chunyang, AN Lei, LI Xin. ECCM scheme against interrupted sampling repeater jamming based on compressed sensing signal reconstruction [J]. Systems Engineering and Electronics, 2018, 40(4): 717-725. |
[8] | YU Lu, QU Jianling, GAO Feng, TIAN Yanping, SHEN Jiangjiang. Missing vibration data reconstruction using compressed sensing based on over complete dictionary [J]. Systems Engineering and Electronics, 2017, 39(8): 1871-1877. |
[9] | SI Jingjing, CHENG Yinbo. Image reconstruction based on approximate message passing and cartoon-texture model [J]. Systems Engineering and Electronics, 2017, 39(6): 1400-1405. |
[10] | WANG Cai-yun1, XU Jing2. Improved optimization algorithm for measurement matrix in compressed sensing [J]. Systems Engineering and Electronics, 2015, 37(4): 752-756. |
[11] | ZHAO Rui-si, WU Shao-hua, WANG Hai-xu, ZHANG Qin-yu. High-performance decoding method based on double sparse dictionary in DCVS system [J]. Systems Engineering and Electronics, 2015, 37(11): 2634-2639. |
[12] | WANG Junyi, LAO Baoqiang, WANG Jinqing , FU Jielin QIU Hongbing. Twodimensional shortrange microwave holography imaging algorithm [J]. Systems Engineering and Electronics, 2014, 36(12): 2348-2355. |
[13] | CAO Xinyuan,CHEN Mingsheng,WU Xianliang. Application of compressed sensing to solution of three dimensional electromagnetic scattering problems by MoM [J]. Journal of Systems Engineering and Electronics, 2013, 35(6): 1143-1147. |
[14] | . Unambiguous wideband DOA estimation based on compressed sensing [J]. Journal of Systems Engineering and Electronics, 2013, 35(5): 920-923. |
[15] | JIANG Liu-bing,HUANG Tao,SHEN Han-ning,LIU Zheng-zhi. Orthogonal multi matching pursuit algorithm based on local randomized Hadamard matrix [J]. Journal of Systems Engineering and Electronics, 2013, 35(5): 914-919. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||