Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (3): 935-941.doi: 10.12305/j.issn.1001-506X.2024.03.19
• Systems Engineering • Previous Articles Next Articles
Guijie LI1,2,*, Yang ZHAN1,2, Dawei LI3, Guangqing XIA1,2
Received:
2023-04-25
Online:
2024-02-29
Published:
2024-03-08
Contact:
Guijie LI
CLC Number:
Guijie LI, Yang ZHAN, Dawei LI, Guangqing XIA. Fault tree importance measure analysis method and its application considering uncertainty[J]. Systems Engineering and Electronics, 2024, 46(3): 935-941.
Table 1
Events for the aircraft icing detection system of fault tree"
符号 | 事件含义 |
T | 丧失结冰探测告警与指示功能 |
E1 | 视觉探测功能丧失 |
E2 | 结冰探测告警功能丧失 |
E3 | 告警信息丧失 |
E4 | 飞行告警计算机功能故障 |
E5 | 总线传输告警信息丧失 |
E6 | 系统数据采集计算机故障 |
E7 | 总线信号输出丧失 |
X1 | 供电故障 |
X2 | 控制开关故障 |
X3 | 探测棒灯故障 |
X4 | 飞行告警计算机1功能故障 |
X5 | 飞行告警计算机2功能故障 |
X6 | 左ID硬线信号输出丧失 |
X7 | 右ID硬线信号输出丧失 |
X8 | 系统数据采集计算机1故障 |
X9 | 系统数据采集计算机2故障 |
X10 | 左ID总线信号输出丧失 |
X11 | 右ID总线信号输出丧失 |
Table 2
Distribution form and distribution parameters of the bottom event probability"
底事件 | 分布形式 | 均值 | 标准差 |
X1 | 指数分布 | 1.8×10-5 | 1.8×10-5 |
X2 | 指数分布 | 7.2×10-4 | 7.2×10-4 |
X3 | 指数分布 | 2.8×10-3 | 2.8×10-3 |
X4 | 对数正态分布 | 3.4×10-4 | 5.1×10-5 |
X5 | 对数正态分布 | 3.4×10-4 | 5.1×10-5 |
X6 | 指数分布 | 1.2×10-3 | 1.2×10-3 |
X7 | 指数分布 | 1.2×10-3 | 1.2×10-3 |
X8 | 对数正态分布 | 2.7×10-3 | 2.7×10-4 |
X9 | 对数正态分布 | 2.7×10-3 | 2.7×10-4 |
X10 | 指数分布 | 9.1×10-3 | 9.1×10-3 |
X11 | 指数分布 | 9.1×10-3 | 9.1×10-3 |
Table 3
Calculation results of bottom event improtance considering uncertainty"
底事件重要度 | 计算结果(排序) | 底事件重要度 | 计算结果(排序) | |
I1U | 2.238 7×10-2(5) | I7U | 8.125 7×10-3(6) | |
I2U | 1.470 2×10-1(2) | I8U | 6.560 1×10-4(11) | |
I3U | 5.608 9×10-1(1) | I9U | 6.954 4×10-4(10) | |
I4U | 6.808 8×10-2(3) | I10U | 8.081 6×10-3(8) | |
I5U | 6.687 5×10-2(4) | I11U | 8.079 6×10-3(9) | |
I6U | 8.087 5×10-3(7) | - | - |
23 | SONG B W . System reliability design and analysis[M]. Xi'an: Northwestern Polytechnical University Press, 2008. |
24 |
WEI P F , LU Z Z , YUAN X K . Monte Carlo simulation for moment-independent sensitivity analysis[J]. Reliability Engineering and System Safety, 2013, 110, 60- 67.
doi: 10.1016/j.ress.2012.09.005 |
25 |
ZHAO Z , LU Z H , ZHAO Y G . An efficient method for predictive failure probability based global sensitivity analysis[J]. Structural and Multidisciplinary Optimization, 2022, 65 (11): 329.
doi: 10.1007/s00158-022-03434-3 |
26 | BOTEV Z I , GROTOWSKI J F , KROESE D P . Kernel density estimation via diffusion[J]. The Annals of Statistics, 2010, 38 (5): 2916- 2957. |
27 | HONGYUAN G , YOU D , GARDONI P . Adaptive subset simulation for time-dependent small failure probability incorporating first failure time and single-loop surrogate model[J]. Structural Safety, 2023, 102, 102327. |
28 | JIANG X , LU Z Z . An efficient method for estimating failure possibility function by combining adaptive Kriging model with augmented fuzzy simulation[J]. Engineering with Computers, 2023, 239. |
29 | MA Y Z , ZHU Y C , LI H S , et al. Adaptive Kriging-based failure probability estimation for multiple responses[J]. Reliability Engineering & System Safety, 2022, 228, 108771. |
30 | 王小辉, 车程, 瑚洋, 等. 基于故障树的飞机结冰探测系统安全性分析[J]. 航空工程进展, 2018, 9 (2): 267- 273. |
WANG X H , CHE C , HU Y , et al. Safety analysis of aircraft icing detection system based on fault tree[J]. Advances in Aeronautical Science and Engineering, 2018, 9 (2): 267- 273. | |
31 | MI J , LU N , LI Y F , et al. An evidential network-based hie-rarchical method for system reliability analysis with common cause failures and mixed uncertainties[J]. Reliability Engineering & System Safety, 2022, 220, 108295. |
1 | MAHMOOD Y A , AHMADI A , VERMA A K , et al. Fuzzy fault tree analysis: a review of concept and application[J]. International Journal of System Assurance Engineering and Management, 2013, 4, 19- 32. |
2 |
MASALEGOOYAN Z , PIADEH F , BEHZADIAN K . A comprehensive framework for risk probability assessment of landfill fire incidents using fuzzy fault tree analysis[J]. Process Safety and Environmental Protection, 2022, 163, 679- 693.
doi: 10.1016/j.psep.2022.05.064 |
3 |
YAZDI M , MOHAMMADPOUR J , LI H , et al. Fault tree analysis improvements: a bibliometric analysis and literature review[J]. Quality and Reliability Engineering International, 2023, 39 (5): 1639- 1659.
doi: 10.1002/qre.3271 |
4 |
MAHMOOD N , BUTALIA T , QIN R , et al. Concurrent events risk assessment generic models with enhanced reliability using Fault tree analysis and expanded rotational fuzzy sets[J]. Expert Systems with Applications, 2022, 197, 116681.
doi: 10.1016/j.eswa.2022.116681 |
5 | IEC 61025. Fault tree analysis (FTA)[S]. Geneva: International Electrotechnical Commission, 2006. |
6 |
ZHANG X , DENG Z G , JIAN Y F , et al. Reliability analysis of nuclear safety-class DCS based on T-S fuzzy fault tree and Baye-sian network[J]. Nuclear Engineering and Technology, 2023, 55 (5): 1901- 1910.
doi: 10.1016/j.net.2023.01.028 |
7 | 陈洪转, 赵爱佳, 李腾蛟, 等. 基于故障树的复杂装备模糊贝叶斯网络推理故障诊断[J]. 系统工程与电子技术, 2021, 43 (5): 1248- 1261. |
CHEN H Z , ZHAO A J , LI T J , et al. Fuzzy Bayesian network inference fault diagnosis of complex equipment based on fault tree[J]. Systems Engineering and Electronics, 2021, 43 (5): 1248- 1261. | |
8 | MAHEVE M, HARIRAM S. System safety enhancement using fault tree models[C]//Proc. of the Annual Reliability and Maintainability Symposium, 2022. |
9 |
GÜRGEN S , YAZIR D , KONUR O . Fuzzy fault tree analysis for loss of ship steering ability[J]. Ocean Engineering, 2023, 279, 114419.
doi: 10.1016/j.oceaneng.2023.114419 |
10 | 李圆圆, 王亚平, 王家浩. 基于混合推理的枪械故障诊断[J]. 装备环境工程, 2022, 19 (6): 26- 34. |
LI Y Y , WANG Y P , WANG J H . Firearm fault diagnosis based on RBR and CBR hybrid inference methods[J]. Equipment Environmental Engineering, 2022, 19 (6): 26- 34. | |
11 |
KENARANGUI R . Event-tree analysis by fuzzy probability[J]. IEEE Trans.on Reliability, 1991, 40 (1): 120- 124.
doi: 10.1109/24.75348 |
12 | OMIDVAR M , ZAREI E , RAMAVANDI B , et al. Fuzzy bow-tie analysis: concepts, review, and application[J]. Linguistic Methods Under Fuzzy Information in System Safety and Reliability Analysis, 2022, 414, 13- 51. |
13 | WANG P , LU Z Z , TANG Z C . Importance measure analysis with epistemic uncertainty and its moving least squares solution[J]. Computers & Mathematics with Applications, 2013, 66 (4): 460- 471. |
14 | SOBOL I M . Sensitivity analysis for non-linear mathematical models[J]. Mathematical Modeling and Computational Experiment, 1993, 7 (11): 407- 414. |
15 | LEAVY A S C , NAKAS G A , PAPADOPOULOS P N . A method for variance-based sensitivity analysis of cascading failures[J]. IEEE Trans.on Power Delivery, 2022, 38 (1): 463- 474. |
16 | CHUN M H , HAN S J , TAK N I . An uncertainty importance measure using a distance metric for the change in a cumulative distribution function[J]. Reliability Engineering and System Safety, 2007, 70 (3): 313- 321. |
17 | BORGONOVO E . A new uncertainty importance measure[J]. Reliability Engineering & System Safety, 2007, 92 (6): 771- 784. |
18 | SHANG X B , SU L , FANG H , et al. An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis[J]. Reliability Engineering & System Safety, 2023, 229, 108858. |
19 |
CUCURACHI S , BLANCO C F , STEUBING B , et al. Implementation of uncertainty analysis and moment independent global sensitivity analysis for full-scale life cycle assessment models[J]. Journal of Industrial Ecology, 2022, 26 (2): 374- 391.
doi: 10.1111/jiec.13194 |
20 | GJB/Z 768A-98. 故障树分析指南[S]. 北京: 国防科学技术工业委员会, 1998. |
GJB/Z 768A-98. Guide to fault tree analysis[S]. Beijing: Commission of Science, Technology and Industry for National Defense, 1998. | |
21 | 曾声奎. 可靠性设计与分析[M]. 北京: 国防工业出版社, 2015. |
ZENG S K . Reliability design and analysis[M]. Beijing: National Defense Industry Press, 2011. | |
22 | 周长聪, 常琦, 周春苹, 等. 基于非概率模型的飞机襟翼故障树分析[J]. 清华大学学报: 自然科学版, 2021, 61 (6): 636- 642. |
ZHOU C C , CHANG Q , ZHOU C P , et al. Fault tree analysis of an aircraft flap system based on a non-probability model[J]. Journal of Tsinghua University (Science and Technology), 2021, 61 (6): 636- 642. | |
23 | 宋保维. 系统可靠性设计与分析[M]. 西安: 西北工业大学出版社, 2008. |
[1] | Meng WANG, Bing ZHU. Application of uncertainty modeling in 2D and 3D object detection [J]. Systems Engineering and Electronics, 2023, 45(8): 2370-2376. |
[2] | Guangbin CAI, Dingkun MAO, Qian YANG, Xin LI, Mingzhe HOU. LPV stability control of morphing aircraft based on SDRE [J]. Systems Engineering and Electronics, 2023, 45(12): 4013-4020. |
[3] | Peichen WANG, Xunliang YAN, Kuan WANG, Xiong ZHENG. Robust trajectory optimization method based on stochastic response surface and polynomial chaos [J]. Systems Engineering and Electronics, 2023, 45(10): 3226-3239. |
[4] | Han YANG, Haowei WANG, Qingrong LI, Min CHEN, Bo PENG. Application research of creep life model based on belief reliability theory [J]. Systems Engineering and Electronics, 2022, 44(3): 1044-1051. |
[5] | Xuan WANG, Peng DI, Dongliang YIN. Conflict evidence fusion method based on Lance distance and credibility entropy [J]. Systems Engineering and Electronics, 2022, 44(2): 592-602. |
[6] | Bin ZENG, Rui WANG, Houpu LI, Xu FAN. Scheduling strategies research based on reinforcement learning for wartime support force [J]. Systems Engineering and Electronics, 2022, 44(1): 199-208. |
[7] | Wei HAN, Kaikai CUI, Jie LIU, Xinwei WANG, Yong ZHANG. Carrier landing control technology based on self-tuning MPC [J]. Systems Engineering and Electronics, 2022, 44(1): 250-261. |
[8] | Bin ZENG, Quanxian ZHANG, Houpu LI. Optimal scheduling for cooperative support chain of logistics and equipment under uncertainty [J]. Systems Engineering and Electronics, 2021, 43(5): 1277-1286. |
[9] | Cheng WANG, Jianxin XU, Lianyu LI, Hongjun WANG, Zhenming ZHANG. Optimization of spare parts allocation under the constraint of system reliability [J]. Systems Engineering and Electronics, 2021, 43(1): 279-284. |
[10] | Zongxing LI, Rui ZHANG. Missile adaptive attitude control based on Riccati equation [J]. Systems Engineering and Electronics, 2020, 42(6): 1358-1365. |
[11] | Shuai LIU, Guorong ZHAO, Bin ZENG, Chao GAO. Moving horizon estimation for uncertain systems with packet dropouts and quantization [J]. Systems Engineering and Electronics, 2020, 42(4): 912-918. |
[12] | Haowei WANG, Rui KANG. Method of analyzing degradation data based on the uncertainty theory [J]. Systems Engineering and Electronics, 2020, 42(12): 2924-2930. |
[13] | Yuqi CHEN, Tingxue XU, Zhiqiang LI, Haijun LI. Dynamic reliability analysis of complex multi-state system based on evidence GO method [J]. Systems Engineering and Electronics, 2020, 42(1): 230-237. |
[14] | FENG Zebiao, WANG Jianjun. Multi-response robust parameter design based on covariant characteristics of model responses [J]. Systems Engineering and Electronics, 2019, 41(9): 2048-2057. |
[15] | LI Xiaopeng, HUANG Hongzhong, LI Fuqiu. PRA based reliability analysis of complex space phased-mission system [J]. Systems Engineering and Electronics, 2019, 41(9): 2141-2147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||