Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (12): 4013-4020.doi: 10.12305/j.issn.1001-506X.2023.12.32
• Guidance, Navigation and Control • Previous Articles
Guangbin CAI1,*, Dingkun MAO1, Qian YANG1, Xin LI1, Mingzhe HOU2
Received:
2022-07-04
Online:
2023-11-25
Published:
2023-12-05
Contact:
Guangbin CAI
CLC Number:
Guangbin CAI, Dingkun MAO, Qian YANG, Xin LI, Mingzhe HOU. LPV stability control of morphing aircraft based on SDRE[J]. Systems Engineering and Electronics, 2023, 45(12): 4013-4020.
14 |
SHAO P Y , WU J , WU C F , et al. Model and robust gain-scheduled PID control of a bio-inspired morphing UAV based on LPV method[J]. Asian Journal of Control, 2019, 21 (4): 1681- 1705.
doi: 10.1002/asjc.2187 |
15 |
WU Z H , LU J C , ZHAO Q , et al. Modified adaptive neural dynamic surface control for morphing aircraft with input and output constraints[J]. Nonlinear Dynamics, 2017, 87 (4): 2367- 2383.
doi: 10.1007/s11071-016-3196-0 |
16 |
LIU C S , ZHANG S J . Novel robust control framework for morphing aircraft[J]. Journal of Systems Engineering and Electronics, 2013, 24 (2): 281- 287.
doi: 10.1109/JSEE.2013.00035 |
17 |
LU Y , SUN Y , LIU X D , et al. Control allocation for a class of morphing aircraft with integer constraints based on Lévy flight[J]. Journal of Systems Engineering and Electronics, 2020, 31 (4): 826- 840.
doi: 10.23919/JSEE.2020.000056 |
18 | 刘正华, 温暖, 祝令谱. 变体飞行器有限时间收敛LPV鲁棒控制[J]. 系统工程与电子技术, 2018, 40 (6): 1325- 1330. |
LIU Z H , WEN N , ZHU L P . Robust LPV control for morphing aircraft with finite-time convergence[J]. Systems Engineering and Electronics, 2018, 40 (6): 1325- 1330. | |
19 | 殷明, 陆宇平, 何真, 等. 变体飞行器变形辅助机动的建模与滑模控制[J]. 系统工程与电子技术, 2015, 37 (1): 128- 134. |
YIN M , LU Y P , HE Z , et al. Modeling and sliding mode control of morphing-aided maneuver for morphing aircraft[J]. Systems Engineering and Electronics, 2015, 37 (1): 128- 134. | |
20 |
WEN N , LIU Z H , ZHU L P . Linear parameter varying based adaptive sliding mode control with bounded L2 gain performance for a morphing aircraft[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233 (5): 1847- 1864.
doi: 10.1177/0954410018764472 |
21 |
HE W , YAN Z C , SUN C Y , et al. Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer[J]. IEEE Trans.on Cybernetics, 2017, 47 (10): 3452- 3465.
doi: 10.1109/TCYB.2017.2720801 |
1 | LI D , ZHAO S , DA R A , et al. A review of modelling and ana-lysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100 (6): 46- 62. |
2 | AJAJ R M , PARANCHEERIVILAKATHIL M S , AMOOZGAR M , et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120 (1): 100682. |
3 |
KAMBAYASHI K , KOGISO N , YAMADA T , et al. Multiobjective topology optimization for a multi-layered morphing flap considering multiple flight conditions[J]. Trans.of the Japan Society for Aeronautical and Space Sciences, 2020, 63 (3): 90- 100.
doi: 10.2322/tjsass.63.90 |
4 |
CHU L L , LI Q , GU F , et al. Design, modeling, and control of morphing aircraft: a review[J]. Chinese Journal of Aeronautics, 2022, 35 (5): 220- 246.
doi: 10.1016/j.cja.2021.09.013 |
5 | TSUSHIMA N , TAMAYAMA M . Recent researches on morphing aircraft technologies in Japan and other countries[J]. Mechanical Engineering Reviews, 2019, 6 (2): 19- 00197. |
6 | HARVEY C , GAMBLE L L , BOLANDER C R , et al. A review of avian-inspired morphing for UAV flight control[J]. Progress in Aerospace Sciences, 2022, 132 (7): 100825. |
7 |
LIVNE E . Aircraft active flutter suppression: state of the art and technology maturation needs[J]. Journal of Aircraft, 2018, 55 (1): 410- 452.
doi: 10.2514/1.C034442 |
8 |
GONG L G , WANG Q , DONG C Y . Disturbance rejection control of morphing aircraft based on switched nonlinear systems[J]. Nonlinear Dynamics, 2019, 96 (2): 975- 995.
doi: 10.1007/s11071-019-04834-9 |
9 | GIULIANI M , DIMINO I , AMEDURI S , et al. Status and perspectives of commercial aircraft morphing[J]. Biomimetics, 2022, 7 (11): 11. |
10 | 殷明. 变体飞行器变形与飞行的协调控制问题研究[D]. 南京: 南京航空航天大学, 2016. |
YIN M. Coordinated control of deformation and flight for morphing aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. | |
11 |
YAN B B , LI Y , DAI P , et al. Aerodynamic analysis, dynamic modeling, and control of a morphing aircraft[J]. Journal of Aerospace Engineering, 2019, 32 (5): 04019058.
doi: 10.1061/(ASCE)AS.1943-5525.0001047 |
12 |
殷明, 陆宇平, 何真. 变体飞行器LPV建模与鲁棒增益调度控制[J]. 南京航空航天大学学报, 2013, 45 (2): 202- 208.
doi: 10.16356/j.1005-2615.2013.02.018 |
YIN M , LU Y P , HE Z . LPV modeling and robust gain schedu-ling control for morphing aircraft[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45 (2): 202- 208.
doi: 10.16356/j.1005-2615.2013.02.018 |
|
13 |
JIANG W L , DONG C Y , WANG Q . A systematic method of smooth switching LPV controllers design for a morphing aircraft[J]. Chinese Journal of Aeronautics, 2015, 28 (6): 1640- 1649.
doi: 10.1016/j.cja.2015.10.005 |
22 | ZHANG J. H∞ robust adaptive controller for a morphing aircraft based on SRAD and LPV model[C]//Proc. of the IEEE Chinese Control and Decision Conference, 2018: 1098-1103. |
23 |
SHAHRADFAR E , FAKHARIAN A . Optimal controller design for DC microgrid based on state-dependent Riccati equation approach[J]. Cyber-Physical Systems, 2021, 7 (1): 41- 72.
doi: 10.1080/23335777.2020.1811381 |
24 |
CAPANNOLO A , LAVAGNA M . Adaptive state-dependent Riccati equation control for formation reconfiguration in cislunar space[J]. Journal of Guidance, Control, and Dynamics, 2022, 45 (5): 982- 989.
doi: 10.2514/1.G006540 |
25 |
BAVARSAD A , FAKHARIAN A , MENHAJ M B . Optimal sliding mode controller for an active transfemoral prosthesis using state-dependent Riccati equation approach[J]. Arabian Journal for Science and Engineering, 2020, 45 (8): 6559- 6572.
doi: 10.1007/s13369-020-04563-x |
26 | ROUDKENARY K A, KHALOOZADEH H, SEDIGH A K. SDRE control of non-affine systems[C]//Proc. of the 4th International Conference on Control, Instrumentation, and Automation, 2016: 239-244. |
27 |
ROVEDA L , PIGA D . Robust state-dependent Riccati equation variable impedance control for robotic force-tracking tasks[J]. International Journal of Intelligent Robotics and Applications, 2020, 4 (4): 507- 519.
doi: 10.1007/s41315-020-00153-0 |
28 | BATMANI Y , TAKHTABNUS M , MIRZAEI R . DC microgrid fault-tolerant control using state-dependent Riccati equation techniques[J]. Optimal Control Applications and Methods, 2022, 43 (1): 123- 137. |
29 | DOSSANTOS C H F , CARVALHO E A , MATINS D , et al. Virtual strategies in the kinematic and dynamical models applied to fault-tolerant strategy of underwater vehicles by using state-dependent Riccati equations[J]. International Journal of Control, 2021, 94 (10): 2741- 2757. |
30 | YAO J, XIN M. Suboptimal control design for differential wheeled mobile robots with θ-D technique[C]//Proc. of the 60th IEEE Conference on Decision and Control, 2021: 1444-1449. |
31 | GHADAMI S M . Optimization of energy for tracking of the magnetic levitation ball using the SDRE technique[J]. Journal of Applied Dynamic Systems and Control, 2021, 4 (2): 79- 84. |
[1] | Wenfeng XU, Yinghui LI, Binbin PEI, Zhilong YU. Coordinated optimization control of morphing aircraft based on multi-model MPC [J]. Systems Engineering and Electronics, 2023, 45(9): 2902-2911. |
[2] | Wenji LIU, Jialu DU, Jian LI, Zheng LI. Stabilization control for vessel-borne stabilization platform based on super-twisting sliding mode [J]. Systems Engineering and Electronics, 2022, 44(5): 1662-1669. |
[3] | Shuo LI, Shaojie ZHANG, Peng YAN, Han ZHANG, Ke LU. LPV control for helicopter maneuvering flight considering input saturation [J]. Systems Engineering and Electronics, 2022, 44(2): 637-643. |
[4] | Wei HAN, Kaikai CUI, Jie LIU, Xinwei WANG, Yong ZHANG. Carrier landing control technology based on self-tuning MPC [J]. Systems Engineering and Electronics, 2022, 44(1): 250-261. |
[5] | Zongxing LI, Rui ZHANG. Missile adaptive attitude control based on Riccati equation [J]. Systems Engineering and Electronics, 2020, 42(6): 1358-1365. |
[6] | ZHAO Guorong, LIU Boyan, GAO Chao. Moving horizon estimation of UAV with random parameter ncertainty and data missing [J]. Systems Engineering and Electronics, 2019, 41(12): 2849-2854. |
[7] | HAN Yunxia, MA Yizhong, OUYANG Linhan, WANG Jianjun, GU Xiaoguang. Multi-response parameters and tolerances concurrent design with model parameter uncertainty [J]. Systems Engineering and Electronics, 2019, 41(1): 131-140. |
[8] | WANG Jianjun, TU Yanan. Optimal design for multiple responses considering predicted response variability [J]. Systems Engineering and Electronics, 2018, 40(8): 1794-1802. |
[9] | LIU Zhenghua, WEN Nuan, ZHU Lingpu. Robust LPV control for morphing aircraft with finite-time convergence [J]. Systems Engineering and Electronics, 2018, 40(6): 1325-1330. |
[10] | WEI Yang, XU Haojun, XUE Yuan. Adaptive disturbance rejection controller design for UAV three dimensional formation keeping#br# [J]. Systems Engineering and Electronics, 2018, 40(12): 2758-2765. |
[11] | JIANG Wei-lai, DONG Chao-yang, WANG Tong, WANG Qing. Continuous smooth switching LPV control for morphing aircraft [J]. Systems Engineering and Electronics, 2015, 37(6): 1347-1353. |
[12] | YIN Ming, LU Yu-ping, HE Zhen, YAO Ke-ming. Modeling and sliding mode control of morphing aircraft for morphing-aided maneuver [J]. Systems Engineering and Electronics, 2015, 37(1): 128-134. |
[13] | WANG Zhenhua, SHEN Yi, ZHANG Xiaolei, WANG Qiang. Robust H∞ filter for uncertain linear descriptor systems [J]. Journal of Systems Engineering and Electronics, 2012, 34(9): 1878-1883. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||