Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (3): 831-838.doi: 10.12305/j.issn.1001-506X.2024.03.08
• Sensors and Signal Processing • Previous Articles Next Articles
Tianwen ZHANG1, Xiaoling ZHANG1,*, Zikang SHAO1, Tianjiao ZENG2
Received:
2022-12-14
Online:
2024-02-29
Published:
2024-03-08
Contact:
Xiaoling ZHANG
CLC Number:
Tianwen ZHANG, Xiaoling ZHANG, Zikang SHAO, Tianjiao ZENG. Mask attention interaction for SAR ship instance segmentation[J]. Systems Engineering and Electronics, 2024, 46(3): 831-838.
Table 3
Quantitative comparison of experimental results %"
方法 | AP50 | AP75 | APS | APM | APL | AP |
Mask R-CNN | 88.5 | 72.1 | 57.2 | 60.8 | 27.4 | 57.8 |
Mask Scoring R-CNN | 89.4 | 73.2 | 58.0 | 61.4 | 22.6 | 58.6 |
Cascade Mask R-CNN | 87.5 | 70.5 | 56.3 | 58.8 | 22.6 | 56.6 |
HTC | 91.7 | 73.1 | 58.7 | 61.6 | 34.8 | 59.3 |
PANet | 91.1 | 74.0 | 59.3 | 61.0 | 52.1 | 59.6 |
YOLACT | 88.0 | 52.1 | 47.3 | 53.5 | 40.2 | 48.4 |
GRoIE | 89.8 | 72.7 | 58.6 | 58.7 | 21.8 | 58.3 |
HQ-ISNet-w18 | 89.3 | 73.6 | 58.2 | 60.4 | 37.2 | 58.6 |
HQ-ISNet-w32 | 90.4 | 75.5 | 58.9 | 61.1 | 37.3 | 59.3 |
HQ-ISNet-w40 | 86.0 | 72.6 | 56.7 | 61.3 | 50.2 | 57.6 |
SA R-CNN | 90.4 | 73.3 | 59.6 | 60.3 | 20.2 | 59.4 |
MAI-Net | 92.1 | 76.1 | 60.6 | 62.4 | 55.2 | 61.1 |
Table 4
Impact of gradually adding improvement block to MAI-Net on accuracy %"
改进模块 | AP50 | AP75 | APS | APM | APL | AP | ||
ASPP | NLB | CSAB | ||||||
✘ | ✘ | ✘ | 91.7 | 73.1 | 58.7 | 61.6 | 34.8 | 59.3 |
✘ | ✘ | 92.0 | 73.9 | 59.3 | 62.1 | 60.2 | 59.9 | |
✘ | 92.2 | 75.4 | 60.2 | 63.2 | 40.1 | 60.8 | ||
92.1 | 76.1 | 60.6 | 62.4 | 55.2 | 61.1 |
1 |
ELDHUSET K . An automatic ship and ship wake detection system for spaceborne SAR images in coastal regions[J]. IEEE Trans.on Geoscience and Remote Sensing, 1996, 34 (4): 1010- 1019.
doi: 10.1109/36.508418 |
2 |
ZHANG T W , ZHANG X L . High-speed ship detection in SAR images based on a grid convolutional neural network[J]. Remote Sensing, 2019, 11 (10): 1206.
doi: 10.3390/rs11101206 |
3 | CRISP J D . The state-of-the-art in ship detection in synthetic aperture radar imagery[M]. Edinburgh, Australia: DSTO Information Sciences Laboratory, 2004. |
4 | NOVAK L M , OWIRKA G J , BROWER W S , et al. The automatic target recognition system in SAIP[J]. The Lincoln Laboratory Journal, 1997, 10 (2): 187- 202. |
5 |
CUI X C , SU Y , CHEN S W . A saliency detector for polarimetric SAR ship detection using similarity test[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (9): 3423- 3433.
doi: 10.1109/JSTARS.2019.2925833 |
6 |
ZHANG T W , ZHANG X L , KE X , et al. LS-SSDD-v1.0: a deep learning dataset dedicated to small ship detection from large-scale Sentinel-1 SAR images[J]. Remote Sensing, 2020, 12 (18): 2997.
doi: 10.3390/rs12182997 |
7 | ZHANG T W , ZHANG X L , SHI J , et al. Balance scene learning mechanism for offshore and inshore ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4004905. |
8 | 雷禹, 冷祥光, 周晓艳, 等. 基于改进ResNet网络的复数SAR图像舰船目标识别方法[J]. 系统工程与电子技术, 2022, 44 (12): 3652- 3660. |
LEI Y , LENG X G , ZHOU X Y , et al. Recognition method of ship target in complex SAR image based on improved ResNet network[J]. Systems Engineering and Electronics, 2022, 44 (12): 3652- 3660. | |
9 | 李男, 叶晓东, 王昊, 等. 基于改进YOLOv5的复杂场景下SAR图像船舶检测方法[J]. 信号处理, 2022, 38 (5): 1009- 1018. |
LI N , YE X D , WANG H , et al. A ship detection method for SAR images in complex scene based on improved YOLOv5[J]. Journal of Signal Processing, 2022, 38 (5): 1009- 1018. | |
10 | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding yolo series in 2021[EB/OL]. [2022-11-30]. https://doi.org/10.48550/arXiv.2107.08430 (2021). |
11 |
ZHANG T W , ZHANG X , LIU C , et al. Balance learning for ship detection from synthetic aperture radar remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 182, 190- 207.
doi: 10.1016/j.isprsjprs.2021.10.010 |
12 | ZHANG T W , ZHANG X L . A mask attention interaction and scale enhancement network for SAR ship instance segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4511005. |
13 |
WEI S J , ZENG X F , QU Q X , et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8, 120234- 120254.
doi: 10.1109/ACCESS.2020.3005861 |
14 |
ZHAO D P , ZHU C B , QI J , et al. Synergistic attention for ship instance segmentation in SAR images[J]. Remote Sensing, 2021, 13 (21): 4384.
doi: 10.3390/rs13214384 |
15 |
ZHANG T W , ZHANG X . HTC+ for SAR ship instance segmentation[J]. Remote Sensing, 2022, 14 (10): 2395.
doi: 10.3390/rs14102395 |
16 | CHEN K, PANG J M, WANG J Q, et al. Hybrid task cascade for instance segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 4969-4978. |
17 | LIN T Y, DOLLAR P, GIRSHICK P, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. |
18 |
ZHANG T W , ZHANG X L , SHI J , et al. Depthwise separable convolution neural network for high-speed SAR ship detection[J]. Remote Sensing, 2019, 11 (21): 2483.
doi: 10.3390/rs11212483 |
19 |
ZHANG T W , ZHANG X L , SHI J , et al. HyperLi-Net: a hyper-light deep learning network for high-accurate and high-speed ship detection from synthetic aperture radar imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167, 123- 153.
doi: 10.1016/j.isprsjprs.2020.05.016 |
20 | CHEN L C , PAPANDREOU G , KOKKINOS I , et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 40 (4): 834- 848. |
21 | SHAO Z K, ZHANG T W, ZHANG X L. GAN with ASPP for SAR image to optical image conversion[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2022: 3355-3358. |
22 | ZHANG T W , ZHANG X . Squeeze-and-excitation Laplacian pyramid network with dual-polarization feature fusion for ship classification in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19, 4019905. |
23 |
WANG Z , WANG B H , XU N , et al. SAR ship detection in complex background based on multi-feature fusion and non-local channel attention mechanism[J]. International Journal of Remote Sensing, 2021, 42 (19): 7519- 7550.
doi: 10.1080/01431161.2021.1963003 |
24 |
ZHANG T W , ZHANG X L , KE X . Quad-FPN: a novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13 (14): 2771.
doi: 10.3390/rs13142771 |
25 | WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803. |
26 |
ZHANG T W , ZHANG X L , LI J W , et al. SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13 (18): 3690.
doi: 10.3390/rs13183690 |
27 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386 |
28 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
29 |
ZHANG T W , ZHANG X . A polarization fusion network with geometric feature embedding for SAR ship classification[J]. Pattern Recognition, 2022, 123, 108365.
doi: 10.1016/j.patcog.2021.108365 |
30 |
ZHANG T W , ZHANG X . Injection of traditional hand-crafted features into modern CNN-based models for SAR ship classification: what, why, where, and how[J]. Remote Sensing, 2021, 13 (11): 2091.
doi: 10.3390/rs13112091 |
31 | ZHANG T W, ZHANG X, SHI J, et al. High-speed ship detection in SAR images by improved yolov3[C]//Proc. of the 16th International Computer Conference on Wavelet Active Media Technology and Information Processing, 2019: 149-152. |
32 | ZHANG T W , ZHANG X . ShipDeNet-20: an only 20 convolution layers and < 1-MB lightweight SAR ship detector[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18 (7): 1234- 1238. |
33 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proc. of the European Confe-rence on Computer Vision, 2014: 740-755. |
34 | 张天文, 张晓玲, 邵子康, 等. 全等级上下文压缩激励的SAR舰船实例分割[J]. 电子科技大学学报, 2023, 52 (3): 357- 365. |
ZHANG T W , ZHANG X L , SHAO Z K , et al. A full-level context squeeze-and-excitation ROI extractor for SAR ship instance segmentation[J]. Journal of University of Electronic Science and Technology of China, 2023, 52 (3): 357- 365. | |
35 | HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2961-2969. |
36 | HUANG Z J, HUANG L C, GONG Y C, et al. Mask scoring R-CNN[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 6409-6418. |
37 | CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162. |
38 | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. |
39 | BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT: realtime instance segmentation[C]//Proc. of the IEEE International Conference on Computer Vision, 2019: 9156-9165. |
40 | ROSSI L, KARIMI A, PRATI A. A novel region of interest extraction layer for instance segmentation[C]//Proc. of the 25th International Conference on Pattern Recognition, 2021: 2203-2209. |
41 |
SU H , WEI S J , LIU S , et al. HQ-ISNet: high-quality instance segmentation for remote sensing imagery[J]. Remote Sensing, 2020, 12 (6): 989.
doi: 10.3390/rs12060989 |
42 | ZHAO D P , ZHU C B , QI J , et al. Synergistic attention for ship instance segmentation in SAR images[J]. Remote Sensing, 2021, 13 (21): 4384. |
[1] | Xiaoyu FANG, Lijia HUANG. SAR ship detection algorithm based on global position information and fusion of residual feature [J]. Systems Engineering and Electronics, 2024, 46(3): 839-848. |
[2] | Qi HU, Shaohai HU, Shuaiqi LIU. Ship detection in SAR image based on multi-layer saliency model [J]. Systems Engineering and Electronics, 2024, 46(2): 478-487. |
[3] | Duanyang SHI, Qiang LIN, Bing HU, Xiaoshuai DU. Target detection method of primary surveillance radar based on YOLO [J]. Systems Engineering and Electronics, 2024, 46(1): 143-151. |
[4] | Mingqian LIU, Zhongqiu XU, Tiancheng CHEN, Bingchen ZHANG, Yirong WU. Low oversampling Staggered SAR imaging method based on L1 & TV regularization [J]. Systems Engineering and Electronics, 2023, 45(9): 2718-2726. |
[5] | Zhongbao WANG, Kuiying YIN. Block effect suppression method of UAV-borne SAR image based on joint domain filtering [J]. Systems Engineering and Electronics, 2023, 45(9): 2768-2776. |
[6] | Meng WANG, Bing ZHU. Application of uncertainty modeling in 2D and 3D object detection [J]. Systems Engineering and Electronics, 2023, 45(8): 2370-2376. |
[7] | Ning WANG, Pengchao HE, Jingyue LU, Xi LIU. DOA estimation based imaging method for multi-channel forward-looking SAR [J]. Systems Engineering and Electronics, 2023, 45(8): 2471-2478. |
[8] | Kai SHAO, Ziqun DU, Guangyu WANG. CSI feedback method for dynamically adjusting compression rate based on model pruning [J]. Systems Engineering and Electronics, 2023, 45(8): 2615-2622. |
[9] | Pengfei WANG, Hengyi ZHAN, Hongzhong SUN. Two-dimensional spatial-variant compensation frequency domain imaging method for bistatic forward-looking radar [J]. Systems Engineering and Electronics, 2023, 45(7): 1990-2001. |
[10] | Tianshu CUI, Dong WANG, Zhen HUANG. Automatic modulation classification based on lightweight network for space cognitive communication [J]. Systems Engineering and Electronics, 2023, 45(7): 2220-2226. |
[11] | Junpeng WANG, Shiqi XING, Yongzhen LI, Datong HUANG, Shaoqiu SONG. FMCW SAR jamming method research based on time-frequency cross [J]. Systems Engineering and Electronics, 2023, 45(6): 1651-1657. |
[12] | Yu JIANG, Qi YUAN, Zhitao HU, Weiwei WU, Xin GU. Airport arrival and departure delay time prediction based on meteorological factors [J]. Systems Engineering and Electronics, 2023, 45(6): 1722-1731. |
[13] | Dongdong ZHANG, Chunping WANG, Qiang FU. Ship target detection in SAR image based on feature-enhanced network [J]. Systems Engineering and Electronics, 2023, 45(4): 1032-1039. |
[14] | Yang CHEN, Canhui LIAO, Kun ZHANG, Jian LIU, Pengju WANG. A signal modulation indentification algorithm based on self-supervised contrast learning [J]. Systems Engineering and Electronics, 2023, 45(4): 1200-1206. |
[15] | Xianghai LI, Zhiwei YANG, Shun HE, Guisheng LIAO, Chaolei HAN, Yan JIANG. Method for SAR-GMTI moving target radial velocity estimation and relocation based on road network information assistance in multi-satellite formation system [J]. Systems Engineering and Electronics, 2023, 45(3): 629-637. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||