Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (2): 561-569.doi: 10.12305/j.issn.1001-506X.2024.02.20
• Systems Engineering • Previous Articles
Tao HU, Liqun SHEN, Jingda ZHU, Chenghui SUN, Weifeng DONG
Received:
2022-12-20
Online:
2024-01-25
Published:
2024-02-06
Contact:
Liqun SHEN
CLC Number:
Tao HU, Liqun SHEN, Jingda ZHU, Chenghui SUN, Weifeng DONG. Sensitivity analysis of radar system effectiveness based on FAST and Sobol index method[J]. Systems Engineering and Electronics, 2024, 46(2): 561-569.
Table 1
Indicator weight summary"
能力层 | 权重 | 指标层 | 权重 | 全局权重 |
空域探测能力 | 0.320 4 | 多目标处理性能 | 0.200 0 | 0.064 1 |
最大作用距离 | 0.400 0 | 0.128 2 | ||
方位观察范围 | 0.200 0 | 0.064 1 | ||
俯仰观察范围 | 0.200 0 | 0.064 1 | ||
目标测量能力 | 0.242 6 | 距离测量精度 | 0.250 0 | 0.060 6 |
方位角测量精度 | 0.250 0 | 0.060 6 | ||
俯仰角测量精度 | 0.250 0 | 0.060 6 | ||
速度测量精度 | 0.250 0 | 0.060 7 | ||
抗干扰能力 | 0.124 7 | 抗主瓣干扰性能 | 0.249 2 | 0.031 1 |
抗副瓣干扰性能 | 0.326 9 | 0.040 8 | ||
频率捷变 | 0.141 3 | 0.017 6 | ||
频率分集 | 0.141 3 | 0.017 6 | ||
旁瓣相消 | 0.141 3 | 0.017 6 | ||
数据处理能力 | 0.164 7 | 数据处理速度 | 0.400 0 | 0.065 9 |
数据容量 | 0.200 0 | 0.032 9 | ||
系统识别技术 | 0.400 0 | 0.065 9 | ||
生存与适应能力 | 0.147 6 | 系统可靠性 | 0.500 0 | 0.073 8 |
环境适应性 | 0.250 0 | 0.036 9 | ||
抗毁伤性 | 0.250 0 | 0.036 9 |
Table 3
Indicator parameter variables and typical values"
指标 | 典型值 |
同时处理目标数目/架 | 600 |
发射机平均功率/kW | 80 |
天线有效孔径/m2 | 7 |
信号重复周期/s | 0.005 |
雷达系统损耗/dB | 4.5 |
信噪比/dB | 12 |
工作频率/GHz | 2.1 |
俯仰观察范围/(°) | 30 |
雷达信号带宽/kHz | 300 |
半功率点水平宽度/(°) | 1 |
半功率点垂直宽度/(°) | 5 |
频率捷变/分 | 85 |
频率分集/分 | 80 |
旁瓣相消/分 | 85 |
数据处理速度/分 | 80 |
数据容量/分 | 85 |
系统识别技术/分 | 80 |
平均无故障时间/h | 600 |
平均维修时间/h | 20 |
环境适应性/分 | 80 |
抗毁伤性/分 | 85 |
Table 5
Size and ranking of some second-order sensitivity indexes of Sobol index method"
指标i | 指标j | 二阶交互效应指数 |
平均维修时间 | 平均无故障时间 | 0.000 945 |
工作频率 | 天线有效孔径面积 | 0.000 451 |
信噪比 | 雷达系统损耗 | 0.000 361 |
工作频率 | 信噪比 | 0.000 298 |
信噪比 | 天线有效孔径面积 | 0.000 262 |
信噪比 | 发射机平均功率 | 0.000 134 |
工作频率 | 发射机平均功率 | 0.000 120 |
半功率点垂直宽度 | 信噪比 | 0.000 075 |
雷达信号带宽 | 信噪比 | 0.000 045 |
雷达系统损耗 | 发射机平均功率 | 0.000 041 |
Table 6
Sensitivity analysis results of FAST method and Sobol index method"
指标名称 | FAST主效应 | Sobol主效应 | Sobol全效应 |
同时处理目标数目 | 0.053 6 | 0.053 2 | 0.053 2 |
发射机平均功率 | 0.210 3 | 0.212 6 | 0.212 5 |
天线有效孔径面积 | 0.091 7 | 0.091 4 | 0.092 0 |
信号重复周期 | 0.023 0 | 0.024 1 | 0.024 2 |
雷达系统损耗 | 0.024 5 | 0.025 2 | 0.024 8 |
信噪比 | 0.011 9 | 0.013 6 | 0.013 8 |
工作频率 | 0.157 1 | 0.156 4 | 0.157 1 |
俯仰观察范围 | 0.037 2 | 0.036 4 | 0.036 4 |
雷达信号带宽 | 0.013 4 | 0.014 5 | 0.014 5 |
半功率点水平宽度 | 0.013 2 | 0.013 7 | 0.013 7 |
半功率点垂直宽度 | 0.003 3 | 0.003 2 | 0.003 2 |
频率捷变 | 0.008 1 | 0.008 1 | 0.008 1 |
频率分集 | 0.007 2 | 0.006 2 | 0.006 2 |
旁瓣相消 | 0.008 1 | 0.008 3 | 0.008 3 |
数据处理速度 | 0.100 5 | 0.099 5 | 0.099 5 |
数据容量 | 0.028 3 | 0.027 6 | 0.027 6 |
系统识别技术 | 0.100 5 | 0.099 4 | 0.099 4 |
平均无故障时间 | 0.019 5 | 0.017 9 | 0.018 9 |
平均维修时间 | 0.019 3 | 0.019 8 | 0.020 8 |
环境适应性 | 0.031 5 | 0.031 9 | 0.031 9 |
抗毁伤性 | 0.035 6 | 0.035 2 | 0.035 2 |
1 |
HAN W , TANG Z Y , ZHU Z B . Method of target tracking with Doppler blind zone constraint[J]. Journal of Systems Engineering and Electronics, 2013, 24 (6): 889- 898.
doi: 10.1109/JSEE.2013.00103 |
2 |
ACCARDO D , FASANO G , FORLENZA L , et al. Flight test of a radar-based tracking system for UAS sense and avoid[J]. IEEE Trans. Aerospace and Electronic Systems, 2013, 49 (2): 1139- 1160.
doi: 10.1109/TAES.2013.6494404 |
3 | 王国恩, 李仙茂, 厉春生. 海上舰机综合雷达对抗侦察效能分析[J]. 电子信息对抗技术, 2016, 31 (6): 69- 75. |
WANG G E , LI X M , LI C S . Comprehensive radar countermeasure reconnaissance effectiveness analysis of the warship and aircraft on sea[J]. Electronic Information Warfare Technology, 2016, 31 (6): 69- 75. | |
4 | 滕俊, 郭万海, 崔超. 防空作战中相控阵雷达信息综合保障效能分析[J]. 舰船电子工程, 2011, 31 (8): 63-66, 75. |
TENG J , GUO W H , CUI C . Analysis of the phased array radar's integrated information support effectiveness in air defense[J]. Ship Electronic Engineering, 2011, 31 (8): 63-66, 75. | |
5 | 胡国庭, 李侠, 王万磊, 等. 地空导弹系统近方雷达情报保障效能评估[J]. 空军雷达学院学报, 2006, 20 (1): 5-7, 17. |
HU G T , LI X , WANG W L , et al. Assessment of intelligence support effectiveness of close-in radar for surface-to-air missile system[J]. Electronic Information Warfare Technology, 2006, 20 (1): 5-7, 17. | |
6 |
SALTELLI A . Making best use of model evaluations to compute sensitivity indices[J]. Computer Physics Communications, 2002, 145 (2): 280- 297.
doi: 10.1016/S0010-4655(02)00280-1 |
7 | BORGONOVO E , PECCATI L . Uncertainty and global sensitivity analysis in the evaluation of investment projects[J]. International Journal of Production Economics, 2005, 104 (1): 62- 73. |
8 | SONG X M , KONG F Z , ZHAN C S , et al. Parameter identification and global sensitivity analysis of Xin'anjiang model using meta-modeling approach[J]. Water Science and Engineering, 2013, 6 (1): 1- 17. |
9 |
FREY H C , PATIL S R . Identification and review of sensitivity analysis methods[J]. Risk Analysis, 2002, 22 (3): 553- 578.
doi: 10.1111/0272-4332.00039 |
10 |
MASSMANN C , HOLZMANN H . Analysis of the behavior of a rainfall-runoff model using three global sensitivity analysis methods evaluated at different temporal scales[J]. Journal of Hydrology, 2012, 475, 97- 110.
doi: 10.1016/j.jhydrol.2012.09.026 |
11 |
CONNOR J D , SUMMERS D , REGAN C , et al. Sensitivity analysis in economic evaluation of payments for water and carbon ecosystem services[J]. Ecosystem Services, 2022, 54, 101416.
doi: 10.1016/j.ecoser.2022.101416 |
12 |
LIU C , LIN D T , FAN J J , et al. Evaluation of housing price control policies based on a sensitivity analysis and nonstationary Markov chain simulation: empirical evidence from China[J]. Emerging Markets Finance and Trade, 2021, 57 (2): 311- 321.
doi: 10.1080/1540496X.2018.1517644 |
13 |
WELI S S , VIGH L G . Blast reliability assessment and sensitivity analysis of steel MRFs equipped with NiTi SMA bolts[J]. Engineering Structures, 2023, 286, 116137.
doi: 10.1016/j.engstruct.2023.116137 |
14 |
DENG G M , FAN D W , ZHANG B F , et al. Sensitivity analysis of large body of control parameters in machine learning control of a square-back Ahmed body[J]. Proceedings of the Royal Society A, 2023, 479 (2269): 20220280.
doi: 10.1098/rspa.2022.0280 |
15 | NAKAYAMA T , WANG Q , OKADERA T . Sensitivity analysis and parameter estimation of anthropogenic water uses for quantifying relation between groundwater overuse and water stress in Mongolia[J]. Ecohydrology & Hydrobiology, 2021, 21 (3): 490- 500. |
16 |
MAMAT N , MOHD R S F , HAMZAH F B . Enhancement of water quality index prediction using support vector machine with sensitivity analysis[J]. Frontiers in Environmental Science, 2023,
doi: 10.3389/fenvs.2022.1061835 |
17 | 李红祺. 随机平衡设计傅里叶振幅敏感性分析方法和拓展傅里叶振幅敏感性分析方法在陆面过程模式敏感性分析中的应用探索[J]. 物理学报, 2015, 64 (6): 403- 409. |
LI H Q . Applications of random balance design Fourier amplitude sensitivity test and extend Fourier amplitude sensitivity test in the parameter sensitivity analysis of land surface process model[J]. Acta Physica Sinica, 2015, 64 (6): 403- 409. | |
18 | 潘星, 张振宇, 张艳梅, 等. 基于Sobol敏感性分析的装备体系保障效能评估[J]. 系统工程与电子技术, 2021, 43 (2): 390- 398. |
PAN X , ZHANG Z Y , ZHANG Y M , et al. Equipment SoS support effectiveness evaluation based on Sobol sensitivity analy- sis[J]. System Engineering and Electronics, 2021, 43 (2): 390- 398. | |
19 | MARTIN H K , STEFFEN P . Choosing the appropriate sensitivity analysis method for building energy model-based investigations[J]. Energy & Buildings, 2016, 130, 166- 176. |
20 |
SONG Y , WEI T , EDUARD C , et al. Comparison of sensitivity analysis methods in building energy assessment[J]. Procedia Engineering, 2016, 146, 174- 181.
doi: 10.1016/j.proeng.2016.06.369 |
21 | KE Y . Research on the effectiveness evaluation model of the prison physical protection system based on grey analytic hierarchy process[J]. Security and Communication Networks, 2017, 2017, 1- 9. |
22 |
CAO X Y , WANG Y D , SHI Z Y . Research on the maintenance effectiveness evaluation of electronic information equipment[J]. Journal of Physics: Conference Series, 2021, 1739, 012043.
doi: 10.1088/1742-6596/1739/1/012043 |
23 | 赵日强, 安实, 麦强, 等. 基于ADC法的防空导弹武器系统效能建模[J]. 系统工程与电子技术, 2020, 42 (9): 2003- 2012. |
ZHAO R Q , AN S , MAI Q , et al. Effectiveness modeling of air defense missile weapon system based on ADC method[J]. System Engineering and Electronics, 2020, 42 (9): 2003- 2012. | |
24 | 张光义, 赵玉洁. 相控阵雷达技术[M]. 北京: 电子工业出版社, 2006. |
ZHANG G Y , ZHAO Y J . Phased array radar technology[M]. Beijing: Electronic Industry Press, 2006. | |
25 | ZHANG Z , WANG C X , YANG H Y , et al. Broadband radar absorbing composites: spatial scale effect and environmental adaptability[J]. Composites science and Technology, 2020, 197, 108262. |
26 |
HESS R A , VETTER T K , WELLS S R . Design and evaluation of a damage-tolerant flight control system[J]. Proc. of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2005, 219 (4): 341- 359.
doi: 10.1243/095441005X7259 |
27 | 田清清, 李卫兵, 吴春霖, 等. 基于德尔菲法的感控投入成本测量指标体系构建[J]. 现代预防医学, 2023, 50 (3): 501- 508. |
TIAN Q Q , LI W B , WU C L , et al. The construction of cost measurement index system for hospital infection control inputs based on Delphi method[J]. Modern Preventive Medicine, 2023, 50 (3): 501- 508. | |
28 | WEI C , ZENG X J , WANG Z G , et al. Construction and research on the evaluation system of university curriculum teaching quality based on analytic hierarchy process[J]. Curriculum and Teaching Methodology, 2022, 5 (12): 10- 17. |
29 | XU C G , GERTNER G Z . A general first-order global sensiti-vity analysis method[J]. Reliability Engineering & System Safety, 2008, 93 (7): 1060- 1071. |
30 | SCHAIBLT J H , SHULER K E . Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. Ⅱ Applications[J]. Journal of Chemical Physics, 1973, 59 (8): 3879- 3888. |
31 | KUCHERENKO S , ZUNIGA M M , TARANTOLA S , et al. Metamodelling and global sensitivity analysis of models with dependent variables[J]. AIP Conference Proceedings, 2011, 1389 (1): 1913- 1913. |
[1] | Rui LI, Mengtao ZHU, Yunjie LI. Online evaluation method of radar jamming effect based on inverse filtering processing [J]. Systems Engineering and Electronics, 2023, 45(9): 2706-2717. |
[2] | Dejiang LU, Xing WANG, You CHEN, Xing HU. Adaptive scheduling method of joint multi-resource for cooperative interference of networked radar system [J]. Systems Engineering and Electronics, 2023, 45(9): 2744-2754. |
[3] | Jiaping CAO, Mengxin OU, Yishan LI, Jiang JIANG, Jichao LI. Island air defense electronic countermeasure equipment system construction and effectiveness evaluation [J]. Systems Engineering and Electronics, 2023, 45(9): 2784-2792. |
[4] | Qi WANG, Lin LU, Haiyang LI, Luyi YANG. Global sensitivity analysis of point return orbit based on controllable domain [J]. Systems Engineering and Electronics, 2023, 45(11): 3606-3615. |
[5] | Jie ZHU, Ning HUANG, Liang CHENG. Multi-parameter sensitivity analysis of network function virtualization application availability [J]. Systems Engineering and Electronics, 2022, 44(8): 2677-2687. |
[6] | Shunqi HUAN, Zhemei FAN, Jianbo WANG. System-of-systems effectiveness evaluation method based on functional dependency network [J]. Systems Engineering and Electronics, 2022, 44(7): 2191-2200. |
[7] | Yuzhuo WANG, Shengqi ZHU, Ximin LI, Lan LAN. Range ambiguous clutter suppression for FDA MIMO bistatic radar with main lobe correction [J]. Systems Engineering and Electronics, 2022, 44(5): 1483-1494. |
[8] | Xiangyang LIN, Qinghua XING, Fuxian LIU. Research on optimization of combat force for key air defense model [J]. Systems Engineering and Electronics, 2022, 44(3): 921-928. |
[9] | Zhipeng WU, Ping ZHANG, Zhen LI, Lei HUANG, Chang LIU, Shuo GAO. Vegetation height inversion method based on light-weighted and small UAV-radar [J]. Systems Engineering and Electronics, 2022, 44(12): 3667-3675. |
[10] | Luyun QIU, Zhigeng FANG, Liangyan TAO, Qiucheng TAO. Effectiveness evaluation of network SoS based on improved FDNA model [J]. Systems Engineering and Electronics, 2022, 44(12): 3728-3737. |
[11] | Chenrui SHI, Lu TIAN, Zhan XU, Ruxin ZHI, Jinhui CHEN. Effectiveness evaluation method of emergency communication and sensing equipment based on PSO-BP [J]. Systems Engineering and Electronics, 2022, 44(11): 3455-3462. |
[12] | Xing PAN, Zhenyu ZHANG, Yanmei ZHANG, Ranran WANG. Equipment SoS support effectiveness evaluation based on Sobol sensitivity analysis [J]. Systems Engineering and Electronics, 2021, 43(2): 390-398. |
[13] | Ang GAO, Qisheng GUO, Zhiming DONG, Shaoqing YANG. Research on efficiency evaluation method of multi unmanned ground vehicle system based on EAS+MADRL [J]. Systems Engineering and Electronics, 2021, 43(12): 3643-3651. |
[14] | Weisheng YANG, Yu WANG, Yang YANG, Liang TANG. Combat network effectiveness evaluation under different node attack strategies based on operation loop [J]. Systems Engineering and Electronics, 2021, 43(11): 3220-3228. |
[15] | Chi HAN, Wei XIONG. Operational effectiveness evaluation of space reconnaissance equipment based on SVR optimized by improved grey wolf optimizer [J]. Systems Engineering and Electronics, 2021, 43(10): 2902-2910. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||