Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (11): 3606-3615.doi: 10.12305/j.issn.1001-506X.2023.11.28
• Guidance, Navigation and Control • Previous Articles Next Articles
Qi WANG1,2, Lin LU1,2, Haiyang LI1,2,*, Luyi YANG1,2
Received:
2022-05-30
Online:
2023-10-25
Published:
2023-10-31
Contact:
Haiyang LI
CLC Number:
Qi WANG, Lin LU, Haiyang LI, Luyi YANG. Global sensitivity analysis of point return orbit based on controllable domain[J]. Systems Engineering and Electronics, 2023, 45(11): 3606-3615.
1 | KIM S , KIM K J , YU Y . Investigation on lunar landing candidate sites for a future lunar exploration mission[J]. International Journal of Aeronautical and Space Sciences, 2021, 23, 221- 232. |
2 | WANG X H , MAO L H , YUE Y X , et al. Manned lunar landing mission scale analysis and flight scheme selection based on mission architecture matrix[J]. Acta Astronautica, 2018, 152 (11): 385- 395. |
3 |
LANDGRAF M . Pathways to sustainability in lunar exploration architectures[J]. Journal of Spacecraft and Rockets, 2021, 58 (6): 1681- 1693.
doi: 10.2514/1.A35019 |
4 |
IVANOV M A , BASILEVSKY A T , BRICHEVA S S , et al. Fundamental problems of lunar research, technical solutions, and priority lunar regions for research[J]. Solar System Research, 2017, 51 (6): 441- 456.
doi: 10.1134/S0038094617060041 |
5 |
EVANS M E , GRAHAM L D . A flexible lunar architecture for exploration (FLARE) supporting NASA's Artemis program[J]. Acta Astronautica, 2020, 177, 351- 372.
doi: 10.1016/j.actaastro.2020.07.032 |
6 | ZHANG H , ZHANG X , ZHANG G , et al. Size, morphology, and composition of lunar samples returned by Chang'e-5 mission[J]. Science China (Physics, Mechanics & Astronomy), 2022, 65 (2): 110- 117. |
7 | LI C L , HU H , YANG M F , et al. Characteristics of the lunar samples returned by the Chang'e-5 mission[J]. National Science Review, 2022, 9 (2): 21- 33. |
8 | WU W R , YU D G , WANG C , et al. Technological breakthroughs and scientific progress of the Chang'e-4 mission[J]. Science China (Information Sciences), 2020, 63 (10): 5- 18. |
9 |
LARS W , ALEXANDRA H , MARRHIAS K , et al. A robotically deployable lunar surface science station and its validation in a moon-analogue environment[J]. Planetary and Space Science, 2020, 193, 105080.
doi: 10.1016/j.pss.2020.105080 |
10 | FREY H C , PATIL S R . Identification and review of sensitivity analysis methods[J]. Risk Analysis, 2010, 22 (3): 553- 578. |
11 | IOOSS B , LEMATRE P . A review on global sensitivity analysis methods[J]. Operations Research/Computer Science Interfaces Series, 2014, 59, 101- 122. |
12 | BO A , FB B , RM A . Numerical modelling-based sensitivity analysis of fluvial morphodynamics[J]. Environmental Modelling & Software, 2021, 135, 104903. |
13 |
ZHOU C , ZHAO H , CHANG Q I , et al. Reliability and global sensitivity analysis for an airplane slat mechanism considering wear degradation[J]. Chinese Journal of Aeronautics, 2021, 34 (1): 163- 170.
doi: 10.1016/j.cja.2020.09.048 |
14 | PERRIN T V E , ROUSTANT O , ROHMER J , et al. Functional principal component analysis for global sensitivity analysis of model with spatial output[J]. Reliability Engineering & System Safety, 2021, 211, 107522. |
15 |
张磊, 于登云, 张熇. 月地转移轨道快速设计与特性分析[J]. 中国空间科学技术, 2011, 31 (3): 62- 70.
doi: 10.3780/j.issn.1000-758X.2011.03.010 |
ZHANG L , YU D Y , ZHANG H . Preliminary design and characteristic analysis of Moon-to-Earth transfer trajectories[J]. Chinese Space Science and Technology, 2011, 31 (3): 62- 70.
doi: 10.3780/j.issn.1000-758X.2011.03.010 |
|
16 | JONES D R , OCAMPO C . Optimization of impulsive trajectories from a circular orbit to an excess velocity vector[J]. Journal of Guidance Control & Dynamics, 2012, 35 (1): 234- 244. |
17 | GAVRIKOVA N M , GOLUBEV Y F . Construction of the return trajectory from the lunar parking orbit to the Earth's atmosphere reentry point[J]. Keldysh Institute of Applied Mathematics, 2019, 53, 1- 39. |
18 | 陆林, 杨路易, 李海阳, 等. 载人飞船月地返回轨道优化设计与特性分析[J]. 系统工程与电子技术, 2019, 41 (12): 2842- 2848. |
LU L , YANG L Y , LI H Y , et al. Optimal design and characteristics analysis of the Moon-Earth return trajectory for manned spacecraft[J]. Systems Engineering and Electronics, 2019, 41 (12): 2842- 2848. | |
19 |
GAVRIKOVA N M , GOLUBEV Y F . Using a three-impulse maneuvering scheme for returning from the lunar orbit to the reentry point of the Earth's atmosphere[J]. Journal of Computer and Systems Sciences International, 2020, 59 (2): 276- 288.
doi: 10.1134/S1064230720010050 |
20 | 杨路易, 李海阳, 张进, 等. 基于改进多圆锥截线的月地返回轨道快速设计方法[J]. 系统工程与电子技术, 2020, 42 (4): 896- 903. |
YANG L Y , LI H Y , ZHANG J , et al. Fast Moon-to-Earth return orbit design based on improved multi-conic method[J]. Systems Engineering and Electronics, 2020, 42 (4): 896- 903. | |
21 |
GAVRIKOVA N M , GOLUBEV Y F . Using a three-impulse maneuvering scheme for returning from the lunar orbit to the reentry point of the Earth's atmosphere[J]. Journal of Computer and Systems Sciences International, 2020, 59 (2): 276- 288.
doi: 10.1134/S1064230720010050 |
22 | SHEN H X , ZHOU J P , PENG Q B , et al. Point return orbit design and characteristics analysis for manned lunar mission[J]. Science China Technological Sciences, 2012, 55 (9): 2561- 2569. |
23 | 陆林, 李海阳, 刘将辉, 等. 载人月球极地探测定点返回轨道设计[J]. 中国空间科学技术, 2020, 40 (5): 61- 71. |
LU L , LI H Y , LIU J H , et al. Design of point return orbit for human lunar exploration mission[J]. Chinese Space Science and Technology, 2020, 40 (5): 61- 71. | |
24 | LI J Y , GONG S P , WANG X . Analytical design methods for determining Moon-to-Earth trajectories[J]. Aerospace Science and Technology, 2015, 40, 138- 149. |
25 | LU L , LI H Y . Three-impulse return orbit design and characteristic analysis for manned lunar missions[J]. IEEE Access, 2020, 8, 154256- 154268. |
26 | 周晚萌. 载人探月序列任务有限推力轨道逆动力学设计方法研究[D]. 长沙: 国防科技大学, 2019. |
ZHOU W M. Finite thrust orbit design for manned lunar prospecting series mission using inverse dynamics method[D]. Changsha: National University of Defense Technology, 2019. | |
27 | CHEN Q , QIAO D , SHANG H B , et al. A new method for solving reachable domain of spacecraft with a single impulse[J]. Acta Astronautica, 2018, 145 (4): 153- 164. |
28 | 贺波勇. 载人登月轨道精确可控域数值延拓分析方法[D]. 长沙: 国防科技大学, 2017. |
HE B Y. Analysis approaches for precision reachable sets of manned lunar orbits using numerical continuation theory[D]. Changsha: National University of Defense Technology, 2017. | |
29 | LU L , LI H Y , ZHOU W M , et al. Design and analysis of a direct transfer trajectory from a near rectilinear halo orbit to a low lunar orbit[J]. Advances in Space Research, 2021, 67 (3): 1143- 1154. |
30 | CHO E , ARHONDITSIS G B , KHIM J , et al. Modeling metal-sediment interaction processes: parameter sensitivity assessment and uncertainty analysis[J]. Environmental Modelling & Software, 2016, 80, 159- 174. |
31 | MERRITT M , ALEXANDERIAN A , GREMAUD P A . multiscale global sensitivity analysis for stochastic chemical systems[J]. SIAM Journal on Multiscale Modeling and Simulation, 2021, 19 (1): 440- 459. |
32 | SALTELLI A , ANNONI P , AZZINI I , et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[J]. Computer Physics Communications, 2010, 181 (2): 259- 270. |
[1] | Peichen WANG, Xunliang YAN, Kuan WANG, Xiong ZHENG. Robust trajectory optimization method based on stochastic response surface and polynomial chaos [J]. Systems Engineering and Electronics, 2023, 45(10): 3226-3239. |
[2] | Kexin ZHAO, Qingbo GAN, Zhitao YANG, Jing LIU. Multiple-roots problem of initial orbit determination of near-Earth object and space target [J]. Systems Engineering and Electronics, 2022, 44(9): 2914-2921. |
[3] | Dawei LI, Jing LIU, Xiyan PENG, Yao ZHANG, Yanhao XIE. Initial orbit determination for a near-circular orbit of space debris with space-based short-arcs method and experiment [J]. Systems Engineering and Electronics, 2022, 44(8): 2601-2611. |
[4] | Jianlei ZHAO, Haiyang LI. Maneuvering identification method of non-cooperative aircraft based onsparse orbit information [J]. Systems Engineering and Electronics, 2022, 44(6): 1950-1956. |
[5] | Mingren HAN, Yufeng WANG. Optimization method for orbit transfer of all-electric propulsion satellite based on reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(5): 1652-1661. |
[6] | Bing HUA, Yingying LIANG, Rui NI. Spacecraft integrated attitude determination method based on improved factor graph model [J]. Systems Engineering and Electronics, 2021, 43(8): 2273-2281. |
[7] | Dan SHEN, Jing LIU. Analysis of the impact of large LEO constellation deployment on the space debris environment [J]. Systems Engineering and Electronics, 2020, 42(9): 2041-2051. |
[8] | Luyi YANG, Haiyang LI, Jin ZHANG, Wanmeng ZHOU, Lin LU. Fast Moon-to-Earth return orbit design based on improved multi-conic method [J]. Systems Engineering and Electronics, 2020, 42(4): 896-903. |
[9] | Zhitao YANG, Jing LIU, Lin LIU. Improved method of orbit analytical solution and its application [J]. Systems Engineering and Electronics, 2020, 42(2): 427-433. |
[10] | Lin LU, Haiyang LI, Jianghui LIU, Luyi YANG. Optimal design of the Moon-Earth emergency return trajectories [J]. Systems Engineering and Electronics, 2020, 42(2): 420-426. |
[11] | WANG Hong-qiang, FANG Yang-wang, WU You-li. Research on Terminal guidance law of missiles based on nonsingular terminal sliding mode [J]. Journal of Systems Engineering and Electronics, 2009, 31(6): 1391-1395. |
[12] | ZHANG Jin-xiu, MU Dong, CAO Xi-bin, CHEN Jun-li. Determination principle of configuration angle on formation design of distributed SAR system [J]. Journal of Systems Engineering and Electronics, 2009, 31(5): 1087-1092. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||