Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (12): 4018-4025.doi: 10.12305/j.issn.1001-506X.2024.12.10
• Sensors and Signal Processing • Previous Articles
Duo CHEN, Yifei FAN, Jia SU, Zixun GUO, Mingliang TAO
Received:
2023-11-27
Online:
2024-11-25
Published:
2024-12-30
Contact:
Yifei FAN
CLC Number:
Duo CHEN, Yifei FAN, Jia SU, Zixun GUO, Mingliang TAO. Target detection algorithm based on generalized inverse Gaussian texture structure[J]. Systems Engineering and Electronics, 2024, 46(12): 4018-4025.
1 | 许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9 (4): 684- 714. |
XU S W , BAI X H , GUO Z X , et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9 (4): 684- 714. | |
2 | WANG Z H , HE Z S , QIN H , et al. Adaptive CFAR detectors for mismatched signal in compound Gaussian sea clutter with inverse Gaussian texture[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 3502705. |
3 |
KAMMOUN A , COUILLET R , PASCAL F , et al. Optimal design of the adaptive normalized matched filter detector using regularized Tyler estimators[J]. IEEE Trans. on Aerospace and Electronic Systems, 2018, 54 (2): 755- 769.
doi: 10.1109/TAES.2017.2766538 |
4 |
FAN Y F , TAO M L , SU J , et al. Analysis of goodness-of-fit method based on local property of statistical model for airborne sea clutter data[J]. Digital Signal Processing, 2020, 99, 102653.
doi: 10.1016/j.dsp.2019.102653 |
5 |
XIN Z H , LIAO G S , YANG Z W , et al. Analysis of distribution using graphical goodness of fit for airborne SAR sea-clutter data[J]. IEEE Trans. on Geoscience and Remote Sensing, 2017, 55 (10): 5719- 5728.
doi: 10.1109/TGRS.2017.2712700 |
6 |
YU H , SHUI P L , ZENG W L , et al. Outlier-robust tri-percentile parameter estimation of K-distributions[J]. Signal Processing, 2021, 181, 107906.
doi: 10.1016/j.sigpro.2020.107906 |
7 | YANG Y , FENG D J , ZHANG W M , et al. Modelling and simulation of spatial-temporal correlated K-distributed clutter for coherent radar seeker[J]. IET Radar, Sonar & Navigation, 2014, 8 (1): 1- 8. |
8 | DONG Y . Optimal coherent radar detection in a K-distributed clutter environment[J]. IET Radar, Sonar & Navigation, 2012, 6 (5): 283- 292. |
9 | SHI S N , SHUI P L . Optimum coherent detection in homogenous K-distributed clutter[J]. IET Radar, Sonar & Navigation, 2016, 10 (8): 1477- 1484. |
10 | YU H , SHUI P L , ZENG W L , et al. Bipercentile parameter estimators of bias reduction generalised Pareto clutter model[J]. IET Radar, Sonar & Navigation, 2020, 14 (7): 1105- 1112. |
11 | LIANG X , YU H , ZOU P J , et al. Multiscan recursive Bayesian parameter estimation of large-scene spatial-temporally varying generalized Pareto distribution model of sea clutter[J]. IEEE Trans. on Geoscience and Remote Sensing, 2020, 60, 5115416. |
12 | SANGSTON K J , GINI F , GRECO M V . Coherent radar target detection in heavy-tailed compound-Gaussian clutter[J]. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (1): 64- 77. |
13 | SHUI P L , SHI L X , YU H , et al. Iterative maximum likelihood and outlier-robust bipercentile estimation of parameters of compound-Gaussian clutter with inverse Gaussian texture[J]. IEEE Signal Processing Letters, 2016, 23 (11): 1572- 1576. |
14 | 水鹏朗, 田超, 封天. 逆高斯纹理复合高斯杂波对异常样本稳健的三分位点估计方法[J]. 电子与信息学报, 2023, 45 (2): 542- 549. |
SHUI P L , TIAN C , FENG T . Outlier-robust tri-percentile parameter estimation method of compound-Gaussian clutter with inverse Gaussian textures[J]. Journal of Electronics and Information Technology, 2023, 45 (2): 542- 549. | |
15 | XUE J, XU S H. Parameters estimation based on moments and Nelder-Mead algorithm for compound-Gaussian clutter with inverse Gaussian texture[C]//Proc. of the IEEE International Conference on Signal Processing Communications and Computing, 2016. |
16 | CHEN S J , KONG L J , YANG J Y . Adaptive detection in compound Gaussian clutter with inverse Gaussian texture[J]. Progress in Electromagnetics Research M, 2013, 28, 157- 167. |
17 |
施赛楠, 水鹏朗, 杨春娇, 等. 基于逆高斯纹理空间相关性的雷达目标检测[J]. 系统工程与电子技术, 2017, 39 (10): 2215- 2220.
doi: 10.3969/j.issn.1001-506X.2017.10.09 |
SHI S N , SHUI P L , YANG C J , et al. Radar target detection based on spatial correlation of inverse-Gaussian texture[J]. Systems Engineering and Electronics, 2017, 39 (10): 2215- 2220.
doi: 10.3969/j.issn.1001-506X.2017.10.09 |
|
18 | LIU J , SUN S Y , LIU W J . One-step persymmetric GLRT for subspace signals[J]. IEEE Trans. on Signal Processing, 2019, 67 (14): 3639- 3648. |
19 | WANG Z H , HE Z S , QIN H , et al. Persymmetric range-spread targets detection in compound Gaussian sea clutter with inverse Gaussian texture[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1- 5. |
20 | WANG Z H , HE Z S , QIN H , et al. Persymmetric adaptive target detection with dual-polarization in compound Gaussian sea clutter with inverse Gamma texture[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 1- 17. |
21 | XUE J , XU S W , SHUI P L . Knowledge-based target detection in compound Gaussian clutter with inverse Gaussian texture[J]. Digital Signal Processing, 2019, 95, 102590. |
22 | XUE J , XU S W , LIU J , et al. Bayesian detection for radar targets in compound-Gaussian sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4020805. |
23 | 薛健, 朱圆玲, 潘美艳. 基于海杂波先验知识的雷达目标自适应Rao检测[J]. 电子与信息学报, 2023, 45 (11): 3839- 3847. |
XUE J , ZHU Y L , PAN M Y . Adaptive Rao detection of radar targets based on the priori-knowledge of sea clutter[J]. Journal of Electronics and Information Technology, 2023, 45 (11): 3839- 3847. | |
24 | 时艳玲, 林毓峰, 宛汀. 部分均匀海杂波中雷达目标的平滑自适应检测[J]. 系统工程与电子技术, 2016, 38 (12): 2745- 2751. |
SHI Y L , LIN Y F , WAN T . Smooth adaptive detector for radar target in partially homogeneous sea clutter environment[J]. Systems Engineering and Electronics, 2016, 38 (12): 2745- 2751. | |
25 | XUE J , XU S W , LIU J , et al. Model for non-Gaussian sea clutter amplitudes using generalized inverse Gaussian texture[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (6): 892- 896. |
26 | 薛健. 复合高斯海杂波背景雷达目标检测算法[D]. 西安: 西安电子科技大学, 2020. |
XUE J. Radar target detection methods in compound-Gaussian sea clutter[D]. Xi'an: Xidian University, 2020. | |
27 | XU S W , WANG Z X , BAI X H , et al. Optimum and near- optimum coherent CFAR detection of radar targets in compound- Gaussian clutter with generalized inverse Gaussian texture[J]. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (3): 1692- 1706. |
28 | PASCAL F , FORSTER P , OVARLEZ J , et al. Performance analysis of covariance matrix estimates in impulsive noise[J]. IEEE Trans. on Signal Processing, 2008, 56 (6): 2206- 2217. |
29 | HAYKIN S. The IPIX radar database[EB/OL]. [2023-10-20]. http://soma.ece.mcmaster.ca/ipix/. |
30 | 刘宁波, 丁昊, 黄勇, 等. X波段雷达对海探测试验与数据获取年度进展[J]. 雷达学报, 2021, 10 (1): 173- 182. |
LIU N B , DING H , HUANG Y , et al. Annual progress of the sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2021, 10 (1): 173- 182. |
[1] | Wei WU, Bing XUE, Dandan LIU. Target and sea clutter identification algorithm based on Tri-feature training [J]. Systems Engineering and Electronics, 2024, 46(9): 2935-2940. |
[2] | Jing LIAN, Yong YANG, Xiaoxia XIE, Xuesong WANG. Analysis of radar seeker sea-surface echoes at a high grazing angle [J]. Systems Engineering and Electronics, 2024, 46(5): 1535-1543. |
[3] | Jian GUAN, Xingyu JIANG, Ningbo LIU, Hao DING, Yong HUANG. Dual-polarized maximum eigenvalue-based target detection in sea clutter environment [J]. Systems Engineering and Electronics, 2024, 46(11): 3715-3725. |
[4] | Hanyi HUANG, Shiyou HU, Shenglong GUO, Shanjun LI, Qin SHU. Sea surface micro-moving target recognition based on sparse decomposition [J]. Systems Engineering and Electronics, 2023, 45(4): 1016-1023. |
[5] | Junling ZHANG, Mei DONG, Baixiao CHEN. Sea clutter suppression algorithm based on tunable Q-factor wavelet transform [J]. Systems Engineering and Electronics, 2023, 45(2): 343-351. |
[6] | Yanlei DU, Xiaofeng YANG, Sheng WANG, Junjun YIN, Huizhang YANG, Jian YANG. Numerical investigation on the spatial ergodicity of ocean radar scattering and sea clutter amplitude statistical characteristics [J]. Systems Engineering and Electronics, 2023, 45(12): 3806-3818. |
[7] | Yanling SHI, Lei WANG, Junhao LI. CFAR detection for small targets on sea surface based on singular value decomposition in projection space [J]. Systems Engineering and Electronics, 2022, 44(2): 512-519. |
[8] | Chunling XUE, Fei CAO, Qing SUN, Jianqiang QIN, Xiaowei FENG. Sea-surface weak target detection based on multi-feature information fusion [J]. Systems Engineering and Electronics, 2022, 44(11): 3338-3345. |
[9] | Weiqiang YU, Fei WANG, Ping SUN, Jianjiang ZHOU, Jun CHEN. RF stealth optimization of airborne radar signal parametersunder clutter background [J]. Systems Engineering and Electronics, 2021, 43(11): 3194-3201. |
[10] | Yanlei DU, Fan GAO, Tao LIU, Jian YANG. Statistical modeling and characteristic analysis of polarimetric SAR sea clutter at X-band based on numerical simulations [J]. Systems Engineering and Electronics, 2021, 43(10): 2742-2755. |
[11] | Sainan SHI, Zeyuan DONG, Jing YANG, Chunjiao YANG. Sea-surface small target detection based on autonomic learning of time-frequency graph [J]. Systems Engineering and Electronics, 2021, 43(1): 33-41. |
[12] | Xin LI, Xiaoyun XIA, Yushi ZHANG, Penglang SHUI, Jinpeng ZHANG. Modified reflectivity model of UHF-band sea clutter at low grazing angle [J]. Systems Engineering and Electronics, 2020, 42(5): 1035-1040. |
[13] | Hai LI, Zhixin LIU, Weijie CHENG, Zibo ZHUANG, Yi FAN. Low-altitude wind shear wind speed estimation method based on MBMC under sea clutter [J]. Systems Engineering and Electronics, 2020, 42(11): 2481-2487. |
[14] | Ziwei DONG, Jun SUN, Jingming SUN, Meiyan PAN. Marine weak moving target detection based on sparse dictionary learning [J]. Systems Engineering and Electronics, 2020, 42(1): 30-36. |
[15] | SHI Yanling, LIN Yufeng, LIANG Dandan. Subband segmented ANMF detector in non-stationary sea clutter [J]. Systems Engineering and Electronics, 2018, 40(4): 782-789. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||