Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (7): 2236-2248.doi: 10.12305/j.issn.1001-506X.2023.07.35
• Communications and Networks • Previous Articles Next Articles
Zhe DENG, Jing LEI, Chengzhe SUN
Received:
2022-07-13
Online:
2023-06-30
Published:
2023-07-11
Contact:
Jing LEI
CLC Number:
Zhe DENG, Jing LEI, Chengzhe SUN. Semi-supervised interference cancellation method for frequency hopping signal blind detection[J]. Systems Engineering and Electronics, 2023, 45(7): 2236-2248.
Table 2
Dataset related parameters"
参数 | 取值 |
有标签数据总数/对 | 400 |
测试数据集大小/对 | 1 452 |
有标签数据信噪比/dB | 0~10 |
有标签数据信干比/dB | 0~10 |
无标签、测试数据信噪比/dB | -10~0 |
无标签、测试数据信干比/dB | -10~0 |
跳频频率集大小/点 | 64 |
符号速率/(sym/s) | 5×105 |
采样率/Hz | 6.144×107 |
信号帧长/s | 4×10-2 |
最大多普勒频移/Hz | 100 |
多径数量 | 3 |
莱斯信道K因子 | 4 |
多径延迟/s | [0 0.9 1.7]×10-5 |
短时傅里叶变换窗 | 256点凯撒窗 |
时频图大小/点 | [256 256] |
1 | LYU J F, QU W. Application of the wavelet rearrangement algorithm in the detection of noncooperative frequency hopping signals[C]//Proc. of the IEEE 11th International Conference on Signal Processing, 2012: 263-266. |
2 | SIROTIYA M, BANERJEE A. Detection and estimation of frequency hopping signals using wavelet transform[C]//Proc. of the 2nd UK-India-IDRC International Workshop on Cognitive Wireless Systems, 2010. |
3 | 赵宏伟, 李勇. 一种基于时频分布的跳频信号检测方法的研究[J]. 信息安全与通信保密, 2006, 4 (6): 98-99, 102 |
ZHAO H W , LI Y . The research of FH signal detection based on time-frequency distribution[J]. China Information Security, 2006, 4 (6): 98-99, 102 | |
4 | 陈利虎, 张尔扬. 一种多分量跳频信号参数盲估计方法[J]. 信号处理, 2009, 25 (2): 194- 198. |
CHEN L H , ZHANG E Y . A new method for blind parameter estimation of multicomponent frequency-hopping signals[J]. Signal Processing, 2009, 25 (2): 194- 198. | |
5 | XU M K, PING X J, LI T Y, et al. A new time-frequency spectrogram analysis of FH signals by image enhancement and mathematical morphology[C]//Proc. of the 4th International Conference on Image and Graphics, 2007: 610-615. |
6 | LUO S G, LUO L Y. Adaptive detection of an unknown FH signal based on image features[C]//Proc. of the 5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009. |
7 | 王曼颖, 龚晓峰, 雒瑞森, 等. 基于自适应形态学的跳频信号参数联合盲估计[J]. 系统工程与电子技术, 2021, 43 (5): 1398- 1405. |
WANG M Y , GONG X F , LUO R S , et al. Joint blind parameter estimation of frequency hopping signal based on adaptive morphology[J]. Systems Engineering and Electronics, 2021, 43 (5): 1398- 1405. | |
8 | 张盛魁, 姚志成, 何岷, 等. 改进时频脊线的跳频参数盲估计算法[J]. 系统工程与电子技术, 2019, 41 (12): 2885- 2890. |
ZHANG S K , YAO Z C , HE M , et al. Blind estimation algorithm for frequency hopping parameters of improved time-frequency ridge[J]. Systems Engineering and Electronics, 2019, 41 (12): 2885- 2890. | |
9 | BOUSIAS ALEXAKIS E , ARMENAKIS C . Evaluation of unet and unet++ architecturs in high resolution image change detection applications[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 43, 1507- 1514. |
10 | CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proc. of the Computer Vision-European Conference on Computer Vision, 2018. |
11 | DAUDT R C, LE S B, BOULCH A. Fully convolutional Siamese networks for change detection[C]//Proc. of the 25th IEEE International Conference on Image Processing, 2018: 4063-4067. |
12 | ZI W J , XIONG W , CHEN H , et al. SGA-Net: self-constructing graph attention neural network for semantic segmentation of remote sensing images[J]. Remote Sensing, 2021, 13 (21): 4201. |
13 | ZHANG C X , YUE P , TAPETE D , et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166, 183- 200. |
14 | TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]//Proc. of the 31st Annual Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2017: 1196-1205. |
15 | SOHN K, BERTHELOT D, CARLINI N, et al. Fixmatch: simplifying semi-supervised learning with consistency and confidence[C]//Proc. of the 34th Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2020: 596-608. |
16 | PENG D F , BRUZZONE L , ZHANG Y J , et al. SemiCDNet: a semisupervised convolutional neural network for change detection in high resolution remote-sensing images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 59, 5891- 5906. |
17 | FANG S , LI K Y , SHAO J Y , et al. SNUNet-CD: a densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1- 5. |
18 | SUN C Z , WU J J , CHEN H , et al. SemiSANet: a semi-supervised high-resolution remote sensing image change detection model using Siamese networks with graph attention[J]. Remote Sensing, 2022, 14 (12): 2801. |
19 | CUBUK E D, ZOPH B, SHLENS J, et al. Practical automated data augmentation with a reduced search space[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 702-703. |
20 | HARALICK M R , SHAPIRO L G . Computer and robot vision[M]. Massachusetts: Addison-Wesley Publishing Company, 1992. |
21 | OESTGES C , CLERCKX B . MIMO wireless communications: from real-world propagation to space-time code design[M]. New York: Academic Press, 2010. |
22 | CSURKA G, LARLUS D, PERRONNIN F. What is a good evaluation measure for semantic segmentation[C]//Proc. of the 24th British Machine Vision Conference, 2013. |
23 | 韩文草, 孙闽红, 王之腾, 等. 基于DeepLabV3与GAN的雷达时频混叠多信号智能检测与分离[J]. 信号处理, 2022, 38 (5): 1065- 1074. |
HAN W C , SUN M H , WANG Z T , et al. Intelligent detection and separation of radar time frequency aliasing multi-signal based on DeepLabV3 and GAN[J]. Journal of Signal Processing, 2022, 38 (5): 1065- 1074. | |
24 | 张珊, 吴瑛, 陈秋华. 基于CASH-CFAR的跳频信号检测[J]. 计算机工程与设计, 2010, 31 (21): 4697- 4700. |
ZHANG S , WU Y , CHEN Q H . Frequency hopping signal detection based on CASH-CFAR[J]. Computer Engineering and Design, 2010, 31 (21): 4697- 4700. | |
25 | 齐昶, 王斌, 颜羡卿. 短波环境下跳频信号检测[J]. 雷达科学与技术, 2011, 9 (4): 335- 340. |
QI C , WANG B , YAN X Q . Frequency hopping signal detection in short wave environment[J]. Radar Science and Techno-logy, 2011, 9 (4): 335- 340. | |
26 | IANDOLA F N, MOSKEWICZ M W, ASHRAF K, et al. SqueezeNet: Alex Netlevel accuracy with 50x fewer parameters and < 1MB model size[EB/OL]. [2022-06-13]. https://arxiv.53yu.com/abs/1602.07360. |
[1] | Qingyuan ZHAO, Zhiqiang ZHAO, Chunmao YE, Yaobing LU. Micro-motion fusion recognition of double band early warning radar based on self-attention mechanism [J]. Systems Engineering and Electronics, 2023, 45(3): 708-716. |
[2] | Pengyu CAO, Chengzhi YANG, Zesheng CHEN, Lu WANG, Limeng SHI. Radar signal recognition method based on deep residual shrinkage attention network [J]. Systems Engineering and Electronics, 2023, 45(3): 717-725. |
[3] | Xiaojia YAN, Weige LIANG, Gang ZHANG, Bo SHE, Fuqing TIAN. Prediction method for mechanical equipment based on RCNN-ABiLSTM [J]. Systems Engineering and Electronics, 2023, 45(3): 931-940. |
[4] | Xiao HAN, Shiwen CHEN, Meng CHEN, Jincheng YANG. Open-set recognition of LPI radar signal based on reciprocal point learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2752-2759. |
[5] | Jun MA, Jingyu YANG, Xi WU. Evaluation of operational system of systems effectiveness based on pre-clustering active semi-supervised learning [J]. Systems Engineering and Electronics, 2022, 44(6): 1889-1896. |
[6] | Pingliang XU, Yaqi CUI, Wei XIONG, Zhenyu XIONG, Xiangqi GU. Generative track segment consecutive association method [J]. Systems Engineering and Electronics, 2022, 44(5): 1543-1552. |
[7] | Tao WU, Lunwen WANG, Jingcheng ZHU. Camouflage image segmentation based on transfer learning and attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 376-384. |
[8] | Tao JIN, Xiaofeng WANG, Runlan TIAN, Xindong ZHANG. Rapid recognition method of radar emitter based on improved 1DCNN+TCN [J]. Systems Engineering and Electronics, 2022, 44(2): 463-469. |
[9] | Yutang MA, Peng SUN, Jieyong ZHANG, Peng WANG, Yunfei YAN, Liang ZHAO. Air group intention recognition method under imbalance samples [J]. Systems Engineering and Electronics, 2022, 44(12): 3747-3755. |
[10] | Yiqiang TANG, Xiaopeng YANG, Shengming ZHU. Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(12): 3863-3870. |
[11] | Lingzhi QU, Junan YANG, Hui LIU, Keju HUANG. Method for individual identification of communication radiation source embedded in attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(1): 20-27. |
[12] | Ziyan LIU, Shanshan MA, Jing LIANG, Mingcheng ZHU, Lei YUAN. Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system [J]. Systems Engineering and Electronics, 2022, 44(1): 307-312. |
[13] | Bangyan CUI, Runlan TIAN, Dongfeng WANG, Gang CUI, Jingyuan SHI. Radar emitter identification based on attention mechanism and improved CLDNN [J]. Systems Engineering and Electronics, 2021, 43(5): 1224-1231. |
[14] | Shiyang GAO, Huixu DONG, Runlan TIAN, Xindong ZHANG. Radar emitter signal recognition method based on SRNN+Attention+CNN [J]. Systems Engineering and Electronics, 2021, 43(12): 3502-3509. |
[15] | Ruochen ZHAO, Jingdong WANG, Siyu LIN, Dongze GU. Small building detection algorithm based on convolutional neural network [J]. Systems Engineering and Electronics, 2021, 43(11): 3098-3106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||