Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (11): 3516-3523.doi: 10.12305/j.issn.1001-506X.2023.11.18
• Systems Engineering • Previous Articles Next Articles
Xuening CHANG, Jianmai SHI, Chao CHEN, Jincai HUANG
Received:
2022-04-18
Online:
2023-10-25
Published:
2023-10-31
Contact:
Jianmai SHI
CLC Number:
Xuening CHANG, Jianmai SHI, Chao CHEN, Jincai HUANG. Multi-stage weapon target assignment method based on Hungarian simulated annealing algorithms[J]. Systems Engineering and Electronics, 2023, 45(11): 3516-3523.
Table 1
Description of parameter and variable symbols"
参数 | 说明 |
Vj | 目标初始威胁值 |
Pij | 武器i对目标j的毁伤能力 |
rj | 目标的松弛系数, rj=0代表目标亟待打击, 不可调整攻击阶段; rj=1代表目标处于松弛状态, 可以调整攻击阶段 |
N={1, 2, ⋯, n} | 目标标号集合, 对任意目标j∈N |
W={1, 2, ⋯, w} | 武器标号集合, 对任意武器i∈W |
S={1, 2, ⋯, s} | 阶段标号集合, 对任意阶段t∈S |
Nt | t阶段准备打击的目标集合, 满足Nt |
Wt | t阶段可以使用的武器集合, 满足Wt |
X=[xtij]s×m×n | xtij=1时, 表示第t个阶段武器i攻击目标j; 反之, xtij=0代表不攻击 |
xtij | 0-1决策变量, 当武器i在t阶段分配给目标j时, 取值为1;否则为0 |
Table 4
Algorithm run time comparison"
算例 | 平均目标函数值 | 平均运行时间/s | |||
HSA | VNS | HSA | VNS | ||
1 | 100.82 | 103.45 | 0.396 | 1.697 | |
2 | 170.15 | 173.28 | 5.045 | 61.204 | |
3 | 335.77 | 344.05 | 8.729 | 1 042.645 | |
4 | 355.22 | 372.05 | 12.204 | 398.575 | |
5 | 741.31 | 767.83 | 23.487 | 2 447.96 | |
6 | 759.28 | 792.82 | 14.76 | 5 193.81 | |
7 | 873.39 | 889.23 | 34.163 | 8 007.56 | |
8 | 1 423.25 | 1 599.12 | 86.18 | - | |
9 | 1 449.23 | 1 609.56 | 87.856 | - | |
10 | 1 753.43 | 1 730.22 | 255.945 | - |
1 | 程进, 齐航, 袁健全, 等. 关于导弹武器智能化发展的思考[J]. 航空兵器, 2019, 26 (1): 20- 24. |
CHENG J , QI H , YUAN J Q , et al. Discussion on the development of intelligent missile technology[J]. Aero Weaponry, 2019, 26 (1): 20- 24. | |
2 | ELRAN M, PADAN C, DOLEV A, et al. Emergency, resilience, and the big city[C]//Proc. of the Research Forum, 2020. |
3 |
付蒙, 纪永强, 陈超, 等. 2020年精确制导武器动力技术发展综述[J]. 飞航导弹, 2021, (2): 7- 13.
doi: 10.16338/j.issn.1009-1319.20210804 |
FU M , JI Y Q , CHEN C , et al. Review of power technology development of precision-guided weapons in 2020[J]. Aerodynamic Missile Journal, 2021, (2): 7- 13.
doi: 10.16338/j.issn.1009-1319.20210804 |
|
4 | DAVIS M T , ROBBINS M J , LUNDAY B J . Approximate dynamic programming for missile defense interceptor fire control[J]. European Journal of Operational Research, 2016, 259 (3): 873- 886. |
5 |
ANDERSEN A C , PAVLIKOV K , TOFFOLO T . Weapon-target assignment problem: exact and approximate solution algorithms[J]. Annals of Operations Research, 2022, 312 (2): 581- 606.
doi: 10.1007/s10479-022-04525-6 |
6 | 夏博远, 赵青松, 张骁雄, 等. 基于动态能力需求的鲁棒性武器系统组合决策[J]. 系统工程与电子技术, 2017, 39 (6): 1280- 1286. |
XIA B Y , ZHAO Q S , ZHANG X X , et al. Robust weapon system portfolio decision based on dynamic capability requirements[J]. Systems Engineering and Electronics, 2017, 39 (6): 1280- 1286. | |
7 | FLOOD M. Target-assignment model[C]//Proc. of the Princeton University Conference on Linear Programming, 1957. |
8 | MANNE A S . A target-assignment problem[J]. Operations Research, 1958, 3 (6): 346- 357. |
9 | LLOYD S P, WITSENHAUSEN H S. Weapons allocation is NP-complete[C]//Proc. of the Summer Computer Simulation Conference, 1986: 1054-1058. |
10 |
DIRIK N , HALL S N , MOORE J T . Maximizing strike aircraft planning efficiency for a given class of ground targets[J]. Optimization Letters, 2015, 9 (8): 1729- 1748.
doi: 10.1007/s11590-014-0844-5 |
11 |
HAN C Y , LUNDAY B J , ROBBINS M J . A game theoretic model for the optimal location of integrated air defense system missile batteries[J]. Informs Journal on Computing, 2016, 28 (3): 405- 416.
doi: 10.1287/ijoc.2016.0690 |
12 |
PENG G , FANG Y W , CHEN S H , et al. A hybrid multi objective discrete particle swarm optimization algorithm for cooperative air combat DWTA[J]. Journal of Optimization, 2017,
doi: 10.1155/2017/8063767 |
13 | 陆一平, 李慧慧. 静态武器目标分配问题的攻击界整数规划求解方法[J]. 系统工程理论与实践, 2019, 39 (3): 783- 789. |
LU Y P , LI H H . An attack-number bounded integer programming method for the static WTA problem[J]. Systems Engineering-Theory & Practice, 2019, 39 (3): 783- 789. | |
14 |
STIEBER A , FVGENSCHUH A , EPP M , et al. The multiple traveling salesmen problem with moving targets[J]. Optimization Letters, 2015, 9 (8): 1569- 1583.
doi: 10.1007/s11590-014-0835-6 |
15 |
GUO D , LIANG Z X , JIANG P , et al. Weapon-target assignment for multi-to-multi interception with grouping constraint[J]. IEEE Access, 2019, 7, 34838- 34849.
doi: 10.1109/ACCESS.2019.2898874 |
16 | LU Y P , CHEN D Z . A new exact algorithm for the weapon-target assignment problem[J]. Omega, 2021, 98 (1): 102138. |
17 |
XIN B , WANG Y P , CHEN J . An efficient marginal-return-based constructive heuristic to solve the sensor-weapon-target assignment problem[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2019, 49 (12): 2536- 2547.
doi: 10.1109/TSMC.2017.2784187 |
18 |
LI X Y , ZHOU D Y , YANG Z , et al. A novel genetic algorithm for the synthetical sensor-weapon-target assignment problem[J]. Applied Sciences, 2019, 9 (18): 3803- 3830.
doi: 10.3390/app9183803 |
19 |
ZHANG K , ZHOU D Y , YANG Z , et al. A novel heterogeneous sensor-weapon-target cooperative assignment for ground-to-air defense by efficient evolutionary approaches[J]. IEEE Access, 2020, 8, 227373- 227398.
doi: 10.1109/ACCESS.2020.3043667 |
20 | LI J, CHEN J, XIN B, et al. Solving multi-objective multi-stage weapon target assignment problem via adaptive NSGA-Ⅱ and adaptive MOEA/D: a comparison study[C]//Proc. of the IEEE Congress on Evolutionary Computation, 2015: 3132-3139. |
21 |
ZHANG K , ZHOU D Y , YANG Z , et al. Constrained multi-objective weapon target assignment for area targets by efficient evolutionary algorithm[J]. IEEE Access, 2019, 7, 176339- 176360.
doi: 10.1109/ACCESS.2019.2955482 |
22 |
AHUJA R K , KUMAR A , JHA K C , et al. Exact and heuristic algorithms for the weapon-target assignment problem[J]. Operations Research, 2007, 55 (6): 1136- 1146.
doi: 10.1287/opre.1070.0440 |
23 |
KLINE A G , AHNER D K , LUNDAY B J , et al. Real-time heuristic algorithms for the static weapon target assignment problem[J]. Journal of Heuristics, 2019, 25 (3): 377- 397.
doi: 10.1007/s10732-018-9401-1 |
24 | NI M F , YU Z K , FENG M , et al. A lagrange relaxation method for solving weapon-target assignment problem[J]. Mathematical Problems in Engineering, 2011, 2011 (PT.4): 264- 265. |
25 |
CHOPRA S , NOTARSTEFANO G , RICE M , et al. A distributed version of the hungarian method for multirobot assignment[J]. IEEE Trans.on Robotics, 2017, 33 (4): 932- 947.
doi: 10.1109/TRO.2017.2693377 |
26 |
张进, 郭浩, 陈统. 基于可适应匈牙利算法的武器-目标分配问题[J]. 兵工学报, 2021, 42 (6): 1339- 1344.
doi: 10.3969/j.issn.1000-1093.2021.06.025 |
ZHANG J , GUO H , CHEN T . Weapon-target assignment based on adaptable hungarian algorithm[J]. Acta Armamentarii, 2021, 42 (6): 1339- 1344.
doi: 10.3969/j.issn.1000-1093.2021.06.025 |
|
27 | 郭斐然, 于剑桥, 宋豹. 基于指派模型的导弹装备体系弹种优化设计[J]. 系统工程与电子技术, 2022, 44 (3): 850- 862. |
GUO F R , YU J Q , SONG B . Optimal design of missile types in missile equipment system based on assignment model[J]. Systems Engineering and Electronics, 2022, 44 (3): 850- 862. | |
28 |
LEE Z J , SU S F , LEE C Y . A genetic algorithm with domain knowledge for weapon-target assignment problems[J]. Journal of the Chinese Institute of Engineers, 2002, 25 (3): 287- 295.
doi: 10.1080/02533839.2002.9670703 |
29 |
XIN B , CHEN J , PENG Z H , et al. An efficient rule-based constructive heuristic to solve dynamic weapon-target assignment problem[J]. IEEE Trans.on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2011, 41 (3): 598- 606.
doi: 10.1109/TSMCA.2010.2089511 |
30 |
LIANG H T , KANG F J . Adaptive chaos parallel clonal selection algorithm for objective optimization in WTA application[J]. Optik, 2016, 127 (6): 3459- 3465.
doi: 10.1016/j.ijleo.2015.12.122 |
31 | SONUC E , SEN B , BAYIR S . A parallel simulated annealing algorithm for weapon-target assignment problem[J]. International Journal of Advanced Computer Science and Applications, 2017, 8 (4): 87- 92. |
32 | KLINE A , AHNER D , HILL R . The weapon-target assignment problem[J]. Computers & Operations Research, 2019, 105 (3): 226- 236. |
33 |
GELATT M P , VECCHI S , KIRKPATRICK C D . Optimization by simulated annealing[J]. Science, 1983, 220 (4598): 671- 680.
doi: 10.1126/science.220.4598.671 |
[1] | Mengjie LI, Xuening CHANG, Jianmai SHI, Chao CHEN, Jincai HUANG, Zhong LIU. Developments of weapon target assignment: models, algorithms, and applications [J]. Systems Engineering and Electronics, 2023, 45(4): 1049-1071. |
[2] | Wenfei ZHAO, Xiaolei LIU, Cuiling MA, Kenan TENG. DWTA of air defense for strategic location on the sea based on multi-objective fuzzy programming [J]. Systems Engineering and Electronics, 2023, 45(3): 777-784. |
[3] | Hongli ZHAO, Tianming CHEN, Nie ZHENG. Engine life prediction based on multi-stage similarity of comprehensive index [J]. Systems Engineering and Electronics, 2021, 43(5): 1430-1436. |
[4] | Minggang YU, Ming HE, Dongge ZHANG, Lianxiang JIA. Scheme optimization for network information-centric system-of-systems based on multi-stage Bayesian Stackelberg game [J]. Systems Engineering and Electronics, 2020, 42(6): 1301-1309. |
[5] | Jiayi LIU, Gang WANG, Jie ZHANG, Chuang WANG, Xituan SONG. Target optimal assignment model based on improved AGD-distributed multi-Agent system [J]. Systems Engineering and Electronics, 2020, 42(4): 863-870. |
[6] | Yue LIU, Xiaoqing ZHONG, Jinyu FU, Xiang LI. Stereo matching algorithm based on hybrid optimization method [J]. Systems Engineering and Electronics, 2020, 42(12): 2692-2699. |
[7] | CHU Xiaogeng, MA Zhengwei, CHEN Xingjun. Look-ahead margin-greedy constructive algorithm for the multi-objective optimization of the weapon target assignment problem [J]. Systems Engineering and Electronics, 2019, 41(10): 2252-2259. |
[8] | XU Hao, XING Qinghua, WANG Wei. WTA for air and missile defense based on fuzzy multi-objective programming [J]. Systems Engineering and Electronics, 2018, 40(3): 563-570. |
[9] | HUANG Liang, LIU Junqiang, GONG Yingjie. Residual lifetime prediction of aeroengines based on the consistency test [J]. Systems Engineering and Electronics, 2018, 40(12): 2736-2742. |
[10] | HUANG Jin-bo, KONG De-jing, CUI Li-rong. Degradation modeling and reliability assessment of multi-stage system with calibrations [J]. Systems Engineering and Electronics, 2016, 38(4): 965-969. |
[11] | LI An-da, HE Zhen, HE Shu-guang. Critical to quality characteristics identification for complex products using GSA [J]. Systems Engineering and Electronics, 2015, 37(9): 2073-2079. |
[12] | YAN Qing-qing, SHEN Huai-rong, SHAO Qiong-ling. Space object ground-based surveillance scheduling based on genetic-simulated annealing algorithm [J]. Systems Engineering and Electronics, 2015, 37(12): 2764-2771. |
[13] | XU Xuanhua, CAI Chenguang, LIANG Dong. Complex multi-stage decision making method based on#br# mixed multi-attribute information [J]. Systems Engineering and Electronics, 2015, 37(10): 2315-2321. |
[14] | HAN Ping,XU Jian-sa,ZHAO Ai-jun. PolSAR image runways detection based on multi-stage classification [J]. Systems Engineering and Electronics, 2014, 36(5): 866-871. |
[15] | GONG Shu-feng,BEN De,PAN Ming-hai. Discrete frequency code waveform design for OAR based on HGSAA [J]. Systems Engineering and Electronics, 2013, 35(9): 1854-1860. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||