Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (4): 901-910.doi: 10.12305/j.issn.1001-506X.2021.04.06
• Sensors and Signal Processing • Previous Articles Next Articles
Dou SUN1(), Shiqi XING1,*(
), Haifeng GAO2(
), Bo PANG1(
), Yongzhen LI1(
), Xuesong WANG1(
)
Received:
2020-07-10
Online:
2021-03-25
Published:
2021-03-31
Contact:
Shiqi XING
E-mail:sundou14@nudt.edu.cn;xingshiqi_paper@163.com;117968769@qq.com;pangbo84826@126.com;e0061@sina.com;wxs1019@vip.sina.com
CLC Number:
Dou SUN, Shiqi XING, Haifeng GAO, Bo PANG, Yongzhen LI, Xuesong WANG. 3D sparse imaging for non-uniformly sampled SAR based on feature enhancement[J]. Systems Engineering and Electronics, 2021, 43(4): 901-910.
1 |
DUNGAN K E P L C . 3-D Imaging of vehicles using wide aperture radar[J]. IEEE Trans. on Aerospace and Electronic Systems, 2011, 47 (1): 187- 200.
doi: 10.1109/TAES.2011.5705669 |
2 | LI C P, ZHOU X M, CHANG L. Application of feature modelling method based on SAR image in target interpretation[C]//Proc. of the IET International Radar Conference, 2019: 6210-6213. |
3 |
JOERG H , PARDINI M , HAJNSEK I , et al. 3-D scattering characterization of agricultural crops at C-band using SAR tomography[J]. IEEE Trans. on Geoence and Remote Sensing, 2018, 56 (7): 3976- 3989.
doi: 10.1109/TGRS.2018.2818440 |
4 | ERTIN E , MOSES R L , POTTER L C . Interferometric methods for three-dimensional target reconstruction with multipass circular SAR[J]. IET Radar, Sonar & Navigation, 2010, 4 (3): 464- 473. |
5 |
FENG D , AN D X , HUANG X T , et al. A phase calibration method based on phase gradient autofocus for airborne holographic SAR imaging[J]. IEEE Geoence and Remote Sensing Letters, 2019, 16 (12): 1864- 1868.
doi: 10.1109/LGRS.2019.2911932 |
6 |
PONCE O , PRATS-IRAOLA P , SCHEIBER R , et al. First airborne demonstration of holographic SAR tomography with fully polarimetric multicircular acquisitions at L-band[J]. IEEE Trans. on Geoence and Remote Sensing, 2016, 54 (10): 6170- 6196.
doi: 10.1109/TGRS.2016.2582959 |
7 |
AUSTIN C D , ERTIN E , MOSES R L . Sparse signal methods for 3-D radar imaging[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5 (3): 408- 423.
doi: 10.1109/JSTSP.2010.2090128 |
8 | LIU D, BOUFOUNOS P T. Compressive sensing based 3D SAR imaging with multi-PRF baselines[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2014. |
9 |
FREY O , MAGNARD C , RUEGG M , et al. Focusing of airborne synthetic aperture radar data from highly nonlinear flight tracks[J]. IEEE Trans. on Geoence and Remote Sensing, 2009, 47 (6): 1844- 1858.
doi: 10.1109/TGRS.2008.2007591 |
10 |
AXELSSON S R J . Beam characteristics of three-dimensional SAR in curved or random paths[J]. IEEE Trans. on Geoence and Remote Sensing, 2004, 42 (10): 2324- 2334.
doi: 10.1109/TGRS.2004.834802 |
11 |
ZHANG S , ZHU Y , DONG G , et al. Truncated SVD-based compressive sensing for downward-looking three-dimensional SAR imaging with uniform/nonuniform linear array[J]. IEEE Geoence and Remote Sensing Letters, 2015, 12 (9): 1853- 1857.
doi: 10.1109/LGRS.2015.2431254 |
12 |
AGUASCA A , ACEVO-HERRERA R , BROQUETAS A , et al. ARBRES: light-weight CW/FM SAR sensors for small UAVs[J]. Sensors, 2013, 13 (3): 3204- 3216.
doi: 10.3390/s130303204 |
13 | LORT M , AGUASCA A , LOPEZ-MARTINEZ C , et al. Initial evaluation of SAR capabilities in UAV multicopter platforms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, PP (99): 1- 14. |
14 | LI J C , CHEN J , WANG P B , et al. Sensor-oriented path planning for multiregion surveillance with a single lightweight UAV SAR[J]. Sensors, 2018, |
15 |
FREY O , MEIER E . 3-D time-domain SAR imaging of a forest using airborne multibaseline data at L-and P-bands[J]. IEEE Trans. on Geoence and Remote Sensing, 2011, 49 (10): 3660- 3664.
doi: 10.1109/TGRS.2011.2128875 |
16 |
PENG X , HONG W , WANG Y , et al. Polar format imaging algorithm with wave-front curvature phase error compensation for airborne DLSLA three-dimensional SAR[J]. IEEE Geoence and Remote Sensing Letters, 2014, 11 (6): 1036- 1040.
doi: 10.1109/LGRS.2013.2282335 |
17 |
XING S Q , LI Y Z , DAI D H , et al. Three-dimensional reconstruction of man-made objects using polarimetric tomographic SAR[J]. IEEE Trans. on Geoence and Remote Sensing, 2013, 51 (6): 3694- 3705.
doi: 10.1109/TGRS.2012.2220145 |
18 |
TIAN H , LI D . Sparse flight array SAR downward-looking 3-D imaging based on compressed sensing[J]. IEEE Geoence and Remote Sensing Letters, 2016, 13 (10): 1395- 1399.
doi: 10.1109/LGRS.2016.2560238 |
19 |
SUN D , XING S Q , LI Y Z , et al. Sub-aperture partitioning me-thod for three-dimensional wide-angle synthetic aperture radar imaging with non-uniform sampling[J]. Electronics, 2019, 8 (6): 629- 643.
doi: 10.3390/electronics8060629 |
20 |
NGUYEN N H , BERRY P , TRAN H T . Compressive sensing for tomographic imaging of a target with a narrowband bistatic radar[J]. Sensors, 2019, 19 (24): 5515- 5532.
doi: 10.3390/s19245515 |
21 | WANG P , LIU M , WANG Z . Three-dimensional SAR imaging of sea targets with low PRF sampling[J]. IET Radar, Sonar & Navigation, 2018, 12 (3): 294- 300. |
22 |
HU X W , TONG N N , GUO Y D , et al. MIMO radar 3D imaging based on multi-dimensional sparse recovery and signal support prior information[J]. IEEE Sensors Journal, 2018, 18 (8): 3152- 3162.
doi: 10.1109/JSEN.2018.2810705 |
23 |
SUNZ M , PANG B , XING H H , et al. Direct 3-D sparse imaging using non-uniform samples without data interpolation[J]. Electronics, 2020, 9 (2): 321- 335.
doi: 10.3390/electronics9020321 |
24 |
SUN C , WANG B P , FANG Y , et al. Multichannel and wide-angle SAR imaging based on compressed sensing[J]. Sensors, 2017, 17 (2): 295- 315.
doi: 10.3390/s17020295 |
25 | SAMADI S , CETIN M , MASNADI-SHIRAZI M A . Sparse representation-based synthetic aperture radar imaging[J]. IET Radar, Sonar & Navigation, 2011, 5 (2): 182- 193. |
26 |
LI Z , JIN K , XU B , et al. An improved attributed scattering model optimized by incremental sparse Bayesian learning[J]. IEEE Trans. on Geoence and Remote Sensing, 2016, 54 (5): 2973- 2987.
doi: 10.1109/TGRS.2015.2509539 |
27 |
JACKSON J A , RIGLING B D , MOSES R L . Canonical scattering feature models for 3D and bistatic SAR[J]. IEEE Trans. on Aerospace and Electronic Systems, 2010, 46 (2): 525- 541.
doi: 10.1109/TAES.2010.5461639 |
28 |
ZENG J , LIN S , WANG Y , et al. L1/2 Regularization: convergence of iterative half thresholding algorithm[J]. IEEE Trans. on Signal Processing, 2014, 62, 2317- 2329.
doi: 10.1109/TSP.2014.2309076 |
29 |
CETIN M , KARL W C . Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization[J]. IEEE Trans. on Image Processing, 2001, 10 (4): 623- 631.
doi: 10.1109/83.913596 |
30 | MOORE L , POTTER L , ASH J . Three-dimensional position accuracy in circular synthetic aperture radar[J]. IEEE Trans. on Aerospace and Electronic Systems, 2014, 29, 29- 40. |
[1] | Tian MIAO, Hongcheng ZENG, He WANG, Jie CHEN. A fast extraction method of flood areas based on iterative threshold segmentation using spaceborne SAR data [J]. Systems Engineering and Electronics, 2022, 44(9): 2760-2768. |
[2] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[3] | Dongning FU, Guisheng LIAO, Yan HUANG, Bangjie ZHANG, Xing WANG. Time-varying narrow-band interference suppression algorithm for SAR based on graph Laplacian embedding [J]. Systems Engineering and Electronics, 2022, 44(6): 1846-1853. |
[4] | Minghui GAI, Su ZHANG, Weitian SUN, Yude NI, Lei YANG. Structural-feature enhancement of SAR targets based on complex value compatible total variation [J]. Systems Engineering and Electronics, 2022, 44(6): 1862-1872. |
[5] | Anlin XU, Yu ZHANG, Feng ZHOU. High resolution ISAR imaging based on Beta process [J]. Systems Engineering and Electronics, 2022, 44(6): 1873-1879. |
[6] | Penghui JI, Dahai DAI, Shiqi XING, Dejun FENG. Dense false moving targets generation method [J]. Systems Engineering and Electronics, 2022, 44(5): 1502-1511. |
[7] | Fengkai LIU, Darong HUANG, Xinrong GUO, Cunqian FENG. Parametric translational compensation method for maneuvering target based on Lv's distribution [J]. Systems Engineering and Electronics, 2022, 44(4): 1166-1173. |
[8] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[9] | Xiaoling ZHOU, Zhaoxia ZHANG, Ya LU, Qian WANG, Kunkun WANG. SAR image recognition based on improved R-FCN [J]. Systems Engineering and Electronics, 2022, 44(4): 1202-1209. |
[10] | Wenjing LI, Zhuolin LI, Zhentao YUAN. Sea clutter suppression and target extraction algorithm based on sparse reconstruction [J]. Systems Engineering and Electronics, 2022, 44(3): 777-785. |
[11] | Lei YANG, Su ZHANG, Minghui GAI, Cheng FANG. High-resolution SAR imagery with enhancement of directional structure feature [J]. Systems Engineering and Electronics, 2022, 44(3): 808-818. |
[12] | Siyu DU, Yinghui QUAN, Minghui SHA, Wen FANG, Mengdao XING. Waveform optimization for SFA radar based on evolutionary particle swarm optimization [J]. Systems Engineering and Electronics, 2022, 44(3): 834-840. |
[13] | Junjie WANG, Dejun FENG, Weidong HU. Two-dimensional SAR image modulation method based on time-varying materials [J]. Systems Engineering and Electronics, 2022, 44(2): 455-462. |
[14] | Cheng FANG, Huijuan LI, Wen LU, Yumeng SONG, Lei YANG. Multi-feature enhancement algorithm for high resolution SAR based on morphological auto-blocking [J]. Systems Engineering and Electronics, 2022, 44(2): 470-479. |
[15] | Yu LEI, Xiangguang LENG, Xiaoyan ZHOU, Zhongzhen SUN, Kefeng JI. Recognition method of ship target in complex SAR image based on improved ResNet network [J]. Systems Engineering and Electronics, 2022, 44(12): 3652-3660. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||