Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (12): 3502-3509.doi: 10.12305/j.issn.1001-506X.2021.12.11
• Sensors and Signal Processing • Previous Articles Next Articles
Shiyang GAO1, Huixu DONG2, Runlan TIAN2, Xindong ZHANG1,*
Received:
2020-11-20
Online:
2021-11-24
Published:
2021-11-30
Contact:
Xindong ZHANG
CLC Number:
Shiyang GAO, Huixu DONG, Runlan TIAN, Xindong ZHANG. Radar emitter signal recognition method based on SRNN+Attention+CNN[J]. Systems Engineering and Electronics, 2021, 43(12): 3502-3509.
Table 7
Comparison between SRNN+Attention+CNN model and classical model"
模型 | 测试集损失 | 识别准确率 | 训练轮数 | 训练总时间/s | 测试时间/s |
SRNN+Attention+CNN | 0.111 9 | 0.965 1 | 25.8 | 915 | 3.6 |
GRU | 0.463 4 | 0.832 6 | 16.0 | 7 904 | 32.0 |
AlexNet | 0.199 9 | 0.936 9 | 7.0 | 421 | 4.0 |
VGG16 | 0.150 6 | 0.949 7 | 5.0 | 1 040 | 18.0 |
VGG19 | 0.154 9 | 0.948 0 | 6.4 | 1 586 | 22.2 |
ResNet18 | 0.156 0 | 0.947 8 | 4.0 | 1 984 | 49.2 |
1 | 赵国庆. 雷达对抗原理[M]. 西安: 西安电子科技大学出版社, 2012. |
ZHAO G Q . Principle of radar countermeasure[M]. Xi'an: Xidian University Press, 2012. | |
2 |
DONG J , WU G W , YANG T T , et al. Battlefield situation awareness and networking based on agent distributed computing[J]. Physical Communication, 2019, 33, 178- 186.
doi: 10.1016/j.phycom.2019.01.002 |
3 | ZAKUAN F R A , ZAMZURI H , RAHMAN M A A , et al. Threat assessment algorithm for active blind spot assist system using short range radar sensor[J]. Asian Research Publishing Network (ARPN) Journal of Engineering and Applied Sciences, 2017, 12 (4): 4270- 4275. |
4 | PARK B, AHN J M. Intra-pulse modulation recognition using pulse description words and complex waveforms[C]//Proc. of the IEEE International Conference on Information and Communication Technology Convergence, 2017: 555-560. |
5 |
ZHOU J L , ZHENG S L , YU X B , et al. Low probability of intercept communication based on structured radio beams using machine learning[J]. IEEE Access, 2019, 7, 169946- 169952.
doi: 10.1109/ACCESS.2019.2955509 |
6 | KAWALEC A, OWCZAREK R. Radar emitter recognition using intrapulse data[C]//Proc. of the IEEE 15th International Conference on Microwaves, Radar and Wireless Communications, 2004, 2: 435-438. |
7 | 李昆, 朱卫纲. 基于机器学习的雷达辐射源识别综述[J]. 电子测量技术, 2019, 42 (18): 69- 75. |
LI K , ZHU W G . Overview of radar emitter recognition based on machine learning[J]. Electronic Measurement Technology, 2019, 42 (18): 69- 75. | |
8 | SINGH S P, KUMAR A, DARBARI H, et al. Machine translation using deep learning: an overview[C]//Proc. of the IEEE International Conference on Computer, Communications and Electronics, 2017: 162-167. |
9 | XIONG C M, ZHONG V, SOCHER R. Dynamic coattention networks for question answering[EB/OL]. [2020-10-20]. https://arxiv.org/abs/1611.01604. |
10 |
LI S T , SONG W W , FANG L Y , et al. Deep learning for hyperspectral image classification: an overview[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (9): 6690- 6709.
doi: 10.1109/TGRS.2019.2907932 |
11 | ZHANG Z , GEIGER J , POHJALAINEN J , et al. Deep learning for environmentally robust speech recognition: an overview of recent developments[J]. ACM Trans.on Intelligent Systems and Technology, 2018, 9 (5): 1- 28. |
12 | LI J Y, ZHAO R, HU H, et al. Improving RNN transducer modeling for end-to-end speech recognition[C]//Proc. of the IEEE Automatic Speech Recognition and Understanding Workshop, 2019: 114-121. |
13 | WANG D, GONG J B, SONG Y X. W-RNN: news text classification based on a weighted RNN[EB/OL]. [2020-10-20]. https://arxiv.org/abs/1909.13077. |
14 |
WAN J , YU X , GUO Q . LPI radar waveform recognition based on CNN and TPOT[J]. Symmetry, 2019, 11 (5): 725- 739.
doi: 10.3390/sym11050725 |
15 |
ZHANG M , DIAO M , GAO L Q , et al. Neural networks for radar waveform recognition[J]. Symmetry, 2017, 9 (5): 75- 94.
doi: 10.3390/sym9050075 |
16 |
GUO Q , YU X , RUAN G Q . LPI radar waveform recognition based on deep convolutional neural network transfer learning[J]. Symmetry, 2019, 11 (4): 540- 553.
doi: 10.3390/sym11040540 |
17 | MEDSKER L R , JAIN L C . Recurrent neural networks: design and applications[M]. Florida: CRC Press, 1999. |
18 | 陈森森. 基于RNN的雷达辐射源分类识别算法研究[D]. 西安: 西安电子科技大学, 2019. |
CHEN S S. Research on classification and recognition algorithm of radar signal based on RNN[D]. Xi'an: Xidian University, 2019. | |
19 | YU Z P, LIU G S. Sliced recurrent neural networks[EB/OL]. [2020-10-20]. https://arxiv.org/abs/1807.02291. |
20 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proc. of the Advances in Neural Information Processing Systems, 2017: 5998-6008. |
21 | HUANG C W, NARAYANAN S S. Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition[C]//Proc. of the IEEE International Conference on Multimedia and Expo, 2017: 583-588. |
22 | BAHULEYAN H, MOU L, VECHTOMOVA O, et al. Varia-tional attention for sequence-to-sequence models[EB/OL]. [2020-10-20]. https://arxiv.org/abs/1712.08207. |
23 | 苟先太, 吴南方. 基于GRU-Attention神经网络的空中群组态势识别方法[J]. 计算机与现代化, 2019, (10): 11- 16, 33. |
GOU X T , WU N F . Air group situation recognition method based on GRU-attention neural networks[J]. Computer and Modernization, 2019, (10): 11- 16, 33. | |
24 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. [2020-10-20]. https://arxiv.org/abs/1502.03167. |
25 | BJORCK N, GOMES C P, SELMAN B, et al. Understanding batch normalization[EB/OL]. [2020-10-20]. https://arxiv.org/abs/1806.02375. |
26 | SANTURKAR S, TSIPRAS D, ⅡYAS A, et al. How does batch normalization help optimization[C]//Proc. of the 32nd International Conference on Neural Information Processing Systems, 2018: 2483-2493. |
27 | HASANI M, KHOTANLOU H. An empirical study on position of the batch normalization layer in convolutional neural networks[C]//Proc. of the 5th Iranian Conference on Signal Processing and Intelligent Systems, 2019. |
28 | CAIN L, CLARK J, PAULS E, et al. Convolutional neural networks for radar emitter classification[C]//Proc. of the IEEE 8th Annual Computing and Communication Workshop and Conference, 2018: 79-83. |
29 | GU J X , WANG Z H , KUEN J , et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77 (5): 354- 377. |
30 | NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C]//Proc. of the International Conference on Machine Learning, 2016: 2014-2023. |
31 | HAQ I U, GONDAL I, VAMPLEW P, et al. Categorical features transformation with compact one-hot encoder for fraud detection in distributed environment[C]//Proc. of the Australa-sian Conference on Data Mining, 2018: 69-80. |
[1] | Xiao HAN, Shiwen CHEN, Meng CHEN, Jincheng YANG. Open-set recognition of LPI radar signal based on reciprocal point learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2752-2759. |
[2] | Pingliang XU, Yaqi CUI, Wei XIONG, Zhenyu XIONG, Xiangqi GU. Generative track segment consecutive association method [J]. Systems Engineering and Electronics, 2022, 44(5): 1543-1552. |
[3] | Xinyu ZHANG, Yuan LIU, Jianing SONG. Short-term orbit prediction based on LSTM neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 939-947. |
[4] | Shiyan SUN, Gang ZHANG, Weige LIANG, Bo SHE, Fuqing TIAN. Remaining useful life prediction method of rolling bearing based on time series data augmentation and BLSTM [J]. Systems Engineering and Electronics, 2022, 44(3): 1060-1068. |
[5] | Tao WU, Lunwen WANG, Jingcheng ZHU. Camouflage image segmentation based on transfer learning and attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 376-384. |
[6] | Tao JIN, Xiaofeng WANG, Runlan TIAN, Xindong ZHANG. Rapid recognition method of radar emitter based on improved 1DCNN+TCN [J]. Systems Engineering and Electronics, 2022, 44(2): 463-469. |
[7] | Guiguang XU, Xudong WANG, Fei WANG, Guobing HU, Yongxing GAO, Zehu LUO. LPI radar emitter signals recognition in low SNR based on SE-ResNeXt network [J]. Systems Engineering and Electronics, 2022, 44(12): 3676-3684. |
[8] | Yutang MA, Peng SUN, Jieyong ZHANG, Peng WANG, Yunfei YAN, Liang ZHAO. Air group intention recognition method under imbalance samples [J]. Systems Engineering and Electronics, 2022, 44(12): 3747-3755. |
[9] | Yiqiang TANG, Xiaopeng YANG, Shengming ZHU. Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(12): 3863-3870. |
[10] | Lingzhi QU, Junan YANG, Hui LIU, Keju HUANG. Method for individual identification of communication radiation source embedded in attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(1): 20-27. |
[11] | Ziyan LIU, Shanshan MA, Jing LIANG, Mingcheng ZHU, Lei YUAN. Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system [J]. Systems Engineering and Electronics, 2022, 44(1): 307-312. |
[12] | Ge LIU, Guosheng RUI, Wenbiao TIAN. Missing data recovery based on double regularization matrix decomposition [J]. Systems Engineering and Electronics, 2021, 43(5): 1191-1197. |
[13] | Bangyan CUI, Runlan TIAN, Dongfeng WANG, Gang CUI, Jingyuan SHI. Radar emitter identification based on attention mechanism and improved CLDNN [J]. Systems Engineering and Electronics, 2021, 43(5): 1224-1231. |
[14] | Rui TIAN, Xurong DONG. Ionosphere VTEC prediction model fused with wavelet decomposition and Prophet framework [J]. Systems Engineering and Electronics, 2021, 43(3): 610-622. |
[15] | Yunke SUN, Zhigeng FANG, Ding CHEN. Multi-time threat assessment based on dynamic grey principal component analysis [J]. Systems Engineering and Electronics, 2021, 43(3): 740-746. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||