Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (12): 3510-3517.doi: 10.12305/j.issn.1001-506X.2021.12.12
• Sensors and Signal Processing • Previous Articles Next Articles
Feng RUAN1, Xialei LU1, Liang GUO1,*, Yachao LI2
Received:
2020-11-05
Online:
2021-11-24
Published:
2021-11-30
Contact:
Liang GUO
CLC Number:
Feng RUAN, Xialei LU, Liang GUO, Yachao LI. Improvement of super-resolution correlated imaging based on metamaterial antenna[J]. Systems Engineering and Electronics, 2021, 43(12): 3510-3517.
1 | ZHU J T, LU G H, GUAN J, et al. Design of a two-dimensional Quasi-Yagi array antenna with low sidelobe[C]//Proc. of the IEEE International Symposium on Antennas and Propagation, 2016. |
2 |
LI D Z , LI X , QIN Y L , et al. Radar coincidence imaging: an instantaneous imaging technique with stochastic signals[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (4): 2261- 2277.
doi: 10.1109/TGRS.2013.2258929 |
3 | CHENG Y Q , ZHOU X L , XU X W , et al. Radar coincidence imaging with stochastic frequency modulated array[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 11 (2): 414- 427. |
4 | 李军, 李小敏, 朱圣棋, 等. 基于雷达旋转发射阵列的微波关联成像方法[P]. 中国: CN104199028A, 2014-09-03. |
LI J, LI X M, ZHU S Q, et al. Microwave correlation imaging method based on radar rotating transmitting array[P]. China: CN104199028A, 2014-09-03. | |
5 |
HUNT J , GOLLUB J , DRISCOLL T , et al. Metamaterial microwave holographic imaging system[J]. Journal of the Optical Society of America A, 2014, 31 (10): 2109- 2127.
doi: 10.1364/JOSAA.31.002109 |
6 |
WATTS C M , SHREKENHAMER D , MONTOYA J , et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8 (8): 605- 609.
doi: 10.1038/nphoton.2014.139 |
7 |
HUNT J , DRISCOLL T , MROZACK A , et al. Metamaterial apertures for computational imaging[J]. Science, 2013, 339 (6117): 310- 313.
doi: 10.1126/science.1230054 |
8 | 张安学, 张松林, 徐卓, 等. 一种单发射体制的雷达关联成像方法[P]. 中国: CN107024693B, 2017-03-07. |
ZHANG A X, ZHANG S L, XU Z, et al. A radar correlation imaging method with a single launch system[P]. China: CN107024693B, 2017-03-07. | |
9 |
GUO Y Y , HE X Z , WANG D J . A novel super-resolution imaging method based on stochastic radiation radar array[J]. Measurement Science and Technology, 2013, 24 (7): 074013.
doi: 10.1088/0957-0233/24/7/074013 |
10 | MENG Q. Correlation algorithm of Microwave staring correlated imaging based on multigrid and CGLS[C]//Proc. of the IEEE International Conference on Communication Problem-Solving, 2015. |
11 | 何学智. 微波凝视关联成像的信息处理方法与仿真[D]. 合肥: 中国科学技术大学, 2013. |
HE X Z. Information processing method and simulation of microwave staring correlation imaging[D]. Hefei: University of Science and Technology of China, 2013. | |
12 |
WIPF D P , RAO B D . An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Trans.on Signal Processing, 2007, 55 (7): 3704- 3716.
doi: 10.1109/TSP.2007.894265 |
13 | 周小利, 王宏强, 程永强, 等. 稀疏贝叶斯学习框架下的扩展目标雷达关联成像[J]. 国防科技大学学报, 2017, 39 (3): 151- 157. |
ZHOU X L , WANG H Q , CHENG Y Q , et al. Extended target radar correlation imaging under sparse Bayesian learning framework[J]. Journal of National University of Defense Technology, 2017, 39 (3): 151- 157. | |
14 | 钱婷婷, 卢光华, 王国超. 借助拉普拉斯先验的聚类稀疏贝叶斯学习对扩展目标进行雷达相关成像[C]//第十届数字图像处理国际会议, 2018. |
QIAN T T, LU G H, WANG G C. Radar correlated imaging for extended target by the clustered sparse Bayesian learning with Laplace prior[C]//Proc. of the 10th International Confe-rence on Digital Image Processing, 2018. | |
15 |
YIN X B , YE Z L , RHO J , et al. Photonic spin hall effect at metasurfaces[J]. Science, 2013, 339 (6126): 1405- 1407.
doi: 10.1126/science.1231758 |
16 |
SHITRIT N , MAAYANI S , VEKSLER D , et al. Rashba-type plasmonic metasurface[J]. Optics Letters, 2013, 38 (21): 4358- 4361.
doi: 10.1364/OL.38.004358 |
17 |
KILDISHEV A V , BOLTASSEVA A , SHALAEV V M . Planar Photonics with Metasurfaces[J]. Science, 2013, 339 (6125): 1232009.
doi: 10.1126/science.1232009 |
18 |
YU N , GENEVET P , KATS M A , et al. Light propagation with phase discontinuities reflection and refraction[J]. Science, 2011, 334 (6054): 333- 337.
doi: 10.1126/science.1210713 |
19 |
YU N , CAPASSO F . Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13 (2): 139- 150.
doi: 10.1038/nmat3839 |
20 |
MD H , MOHAMMAD F , SIKDER I , et al. A new compact double-negative miniaturized metamaterial for wideband operation[J]. Materials, 2016, 9 (10): 830.
doi: 10.3390/ma9100830 |
21 |
XIA R , JING X F , ZHU H H , et al. Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region[J]. Optics Communications, 2017, 383, 310- 315.
doi: 10.1016/j.optcom.2016.08.060 |
22 | GAO L H , CHENG Q , YANG J , et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science & Applications, 2015, 4 (9): e324. |
23 | LIU P Q , LUXMOORE I J , MIKHAILOV S A , et al. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons[J]. Nature Communications, 2015, 6, 1- 18. |
24 | FROMENTEZE T , DECROZE C , CARSENAT D . Waveform coding for passive multiplexing: application to microwave imaging[J]. IEEE Trans.on Antennas & Propagation, 2015, 63 (2): 593- 600. |
25 |
HUNT J , DRISCOLL T , MROZACK A , et al. Metamaterial apertures for computational imaging[J]. Science, 2013, 339 (6117): 310- 313.
doi: 10.1126/science.1230054 |
26 | LI Y B , LI L L , CAI B G , et al. Holographic leaky-wave metasurfaces for dual-sensor imaging[J]. Scientific Report, 2015, 5, 18170. |
27 |
MOHAMMADREZA I , GOLLUB F , JONAH N , et al. Analytical modeling of printed metasurface cavities for computational imaging[J]. Journal of Applied Physics, 2016, 120, 144903.
doi: 10.1063/1.4964336 |
28 | LI D Z , LI X , QIN Y L , et al. Radar coincidence imaging: an instantaneous imaging technique with stochastic signals[J]. IEEE Trans.on Geoence & Remote Sensing, 2014, 52 (4): 2261- 2277. |
29 | 李瑞, 张群, 苏令华, 等. 基于稀疏贝叶斯学习的双基雷达关联成像[J]. 电子与信息学报, 2019, 41 (12): 2865- 2872. |
LI R , ZHANG Q , SU L H , et al. Bistatic radar coincidence imaging based on sparse Bayesian learning[J]. Journal of Electronics & Information Technology, 2019, 41 (12): 2865- 2872. | |
30 | 许然. 提高雷达成像质量的若干新体制和新方法研究[D]. 西安: 西安电子科技大学, 2015. |
XU R. Research on several new systems and New methods to improve the quality of radar imaging[D]. Xi'an: Xidian University, 2015. | |
31 | 许然, 卓志敏, 郑剑锋, 等. 三维超分辨微波关联成像技术研究[C]//量子信息技术与应用研讨会论文集, 2017. |
XU R, ZHUO Z M, ZHENG J F, et al. Research on three-dimensional super-resolution microwave correlation imaging technology[C]//Proc. of the Seminar on Quantum Information Technology and Applications, 2017. |
[1] | He TIAN, Chunzhu DONG, Hongcheng YIN. Radar target three-dimensional scattering centers inversion based on compressed sensing and frequency sparsity [J]. Systems Engineering and Electronics, 2022, 44(9): 2783-2790. |
[2] | Ailun XIE, Xiaobin LIU, Feng ZHAO, Xiaofeng AI, Shunping XIAO. Reconstruction method of PCM signal intermittent transmitting and receiving echo in radiation simulation [J]. Systems Engineering and Electronics, 2022, 44(3): 771-776. |
[3] | Hai LI, Ze HUYAN, Zhijie MAO. Low-altitude wind-shear velocity ambiguity resolution based on compressed sensing under strong clutter [J]. Systems Engineering and Electronics, 2022, 44(10): 3029-3036. |
[4] | Xiaoyu MA, Jinsheng ZHANG, Ting LI. Image compress and encryption method based on Chua's circuit and compressed sensing [J]. Systems Engineering and Electronics, 2021, 43(9): 2407-2412. |
[5] | Feng RUAN, Liang GUO, Yachao LI, Ran XU. Phased array radar forward-looking imaging based on correlated imaging [J]. Systems Engineering and Electronics, 2021, 43(9): 2457-2462. |
[6] | Ling ZHUANG, Huashuang YE. Improved clipping noise elimination scheme for compressed sensing [J]. Systems Engineering and Electronics, 2021, 43(8): 2341-2346. |
[7] | Tianyao HUANG, Yuhan LI, Lei WANG, Yimin LIU, Xiqin WANG. Review of Performance bounds on sparse target recovery using coherent frequency agile radar [J]. Systems Engineering and Electronics, 2021, 43(7): 1729-1736. |
[8] | Zixin ZHANG, Guoping HU, Hao ZHOU, Chenghong ZHAN. Low elevation angle estimation algorithm for MIMO radar based on sparse reconstruction of cross-covariance [J]. Systems Engineering and Electronics, 2021, 43(5): 1218-1223. |
[9] | Yingxin ZHAO, Changfeng WANG, Hong WU, Ming ZHANG, Yingjie HUANG, Legeng WANG, Zhiyang LIU. Channel estimation algorithm based on compressed sensing with maximizing negative entropy [J]. Systems Engineering and Electronics, 2021, 43(4): 1126-1132. |
[10] | Guiyong LI, Min YU, Yongkun YU. Distributed compressed sensing LMMSE channel estimation in massive MIMO systems [J]. Systems Engineering and Electronics, 2021, 43(3): 823-831. |
[11] | Zhixing LIU, Yinghui QUAN, Guoyao XIAO, Mengdao XING. Signal design method for integrated radar and communication based on PRI agility [J]. Systems Engineering and Electronics, 2021, 43(10): 2836-2842. |
[12] | Binrui LI, Zhongpei ZHANG. Channel estimation for reconfigurable intelligent surface assisted low-resolution quantized massive MIMO [J]. Systems Engineering and Electronics, 2021, 43(10): 2984-2991. |
[13] | Guisheng WANG, Guoce HUANG, Yequn WANG, Shufu DONG, Qinghua REN, Shuai WEI. Anti-interference method with intelligence for transform domain communication based on cognitive-engine [J]. Systems Engineering and Electronics, 2021, 43(1): 223-231. |
[14] | Qiang HUANG, Jianguo YU, Pengfei SHI. Complex ballistic group targets tracking based on adaptive compressed sensing [J]. Systems Engineering and Electronics, 2020, 42(8): 1710-1717. |
[15] | Ce JI, Xiaomeng ZHANG. Regularization orthogonal matching pursuit based on multiple support [J]. Systems Engineering and Electronics, 2020, 42(4): 756-763. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||