Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (10): 2984-2991.doi: 10.12305/j.issn.1001-506X.2021.10.34
• Communications and Networks • Previous Articles Next Articles
Binrui LI, Zhongpei ZHANG*
Received:
2021-02-04
Online:
2021-10-01
Published:
2021-11-04
Contact:
Zhongpei ZHANG
CLC Number:
Binrui LI, Zhongpei ZHANG. Channel estimation for reconfigurable intelligent surface assisted low-resolution quantized massive MIMO[J]. Systems Engineering and Electronics, 2021, 43(10): 2984-2991.
1 | MARZETTA T L , NGO H Q . Fundamentals of massive MIMO[M]. Cambridge: Cambridge University Press, 2016. |
2 |
BASAR E , DI RENZO M , DE R J , et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access, 2019, 7, 116753- 116773.
doi: 10.1109/ACCESS.2019.2935192 |
3 |
DAI L L , WANG B C , WANG M , et al. Reconfigurable intelligent surface-based wireless communications: antenna design, prototyping, and experimental results[J]. IEEE Access, 2020, 8, 45913- 45923.
doi: 10.1109/ACCESS.2020.2977772 |
4 |
TANG W , CHEN M Z , DAI J Y , et al. Wireless communications with programmable meta surface: new paradigms, opportunities, and challenges on transceiver design[J]. IEEE Wireless Communications, 2020, 27 (2): 180- 187.
doi: 10.1109/MWC.001.1900308 |
5 |
TANG W , LI X , DAI J Y , et al. Wireless communications with programmable met surface: transceiver design and experimental results[J]. China Communications, 2019, 16 (5): 46- 61.
doi: 10.23919/j.cc.2019.05.004 |
6 | NGUYEN S L H, GHRAYEB A. Compressive sensing-based channel estimation for massive multiuser MIMO systems[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2013: 2890-2895. |
7 |
QI C , WU L . Uplink channel estimation for massive MIMO systems exploring joint channel sparsity[J]. Electronics Letters, 2014, 50 (23): 1770- 1772.
doi: 10.1049/el.2014.2769 |
8 |
RAO X , LAU V K N . Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems[J]. IEEE Trans.on Signal Processing, 2014, 62 (12): 3261- 3271.
doi: 10.1109/TSP.2014.2324991 |
9 |
GAO Z , DAI L L , WANG Z , et al. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO[J]. IEEE Trans.on Signal Processing, 2015, 63 (23): 6169- 6183.
doi: 10.1109/TSP.2015.2463260 |
10 |
XIU Y , WANG W Y , ZHANG Z P . A message passing approach to acquire mmwave channel state information based on out-of-band data[J]. IEEE Access, 2018, 6, 45665- 45680.
doi: 10.1109/ACCESS.2018.2855688 |
11 |
NADEEM Q U A , ALWAZANI H , KAMMOUN A , et al. Intelligent reflecting surface assisted multi-user MISO communication: channel estimation and beamforming design[J]. IEEE Open Journal of the Communications Society, 2020, 1, 661- 680.
doi: 10.1109/OJCOMS.2020.2992791 |
12 | JENSEN T L, CARVALHOD E. An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 5000-5004. |
13 |
HE Z Q , YUAN X . Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[J]. IEEE Wireless Communications Letters, 2020, 9 (2): 210- 214.
doi: 10.1109/LWC.2019.2948632 |
14 | HU C, DAI L L. Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications[EB/OL]. [2021-09-26]. https://ieeexplore.ieee.org/document/9400843. |
15 | CHEN J, LIANG Y C, CHENG H V, et al. Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems[EB/OL]. [2021-03-26]. https://arxiv.org/pdf/1912.03619.pdf. |
16 |
WANG P L , FANG J , DUAN H P , et al. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[J]. IEEE Signal Processing Letters, 2020, 27, 905- 909.
doi: 10.1109/LSP.2020.2998357 |
17 | WEI L, HUANG C C, ALEXANDROPOULOS G C, et al. Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication[C]//Proc. of the IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, 2020. |
18 |
WEI X H , SHEN D C , DAI L L . Channel estimation for RIS assisted wireless communications: part Ⅱ—an improved solution based on double-structured sparsity[J]. IEEE Communications Letters, 2021, 25 (5): 1403- 1407.
doi: 10.1109/LCOMM.2021.3052787 |
19 |
WEI X H , SHEN D C , DAI L L . Channel estimation for RIS assisted wireless communications: part I—fundamentals, solutions, and future opportunities[J]. IEEE Communications Letters, 2021, 25 (5): 1398- 1402.
doi: 10.1109/LCOMM.2021.3052822 |
20 |
XIONG Y Z , ZHANG Z P , WEI N , et al. Performance analysis of uplink massive MIMO systems with variable-resolution ADCs using MMSE and MRC detection[J]. Transactions on Emerging Telecommunications Technologies, 2019, 30 (5): e3549.
doi: 10.1002/ett.3549 |
21 |
ZHANG J Y , DAI L L , SUN S Y , et al. On the spectral efficiency of massive MIMO systems with low-resolution ADCs[J]. IEEE Communications Letters, 2016, 20 (5): 842- 845.
doi: 10.1109/LCOMM.2016.2535132 |
22 | WANG S C , LI Y Z , WANG J . Multiuser detection in massive spatial modulation MIMO with low-resolution ADCs[J]. IEEE Trans.on Wireless Communications, 2014, 14 (4): 2156- 2168. |
23 | JACQUES L, DEGRAUX K, DE V C. Quantized iterative hard thresholding: bridging 1-bit and high-resolution quantized compressed sensing[EB/OL]. [2021-03-26]. http://arxiv.org/pdf/1305.1786.pdf |
24 | ZYMNIS A , BOYD S , CANDES E . Compressed sensing with quantized measurements[J]. IEEE Signal Processing Letters, 2009, 17 (2): 149- 152. |
25 | XIONG Y Z , ZHANG Z P , WEI N , et al. A bilinear GAMP-based receiver for quantized mmwave massive MIMO using expectation maximization[J]. IEEE Communications Letters, 2018, 23 (1): 84- 87. |
26 | WEN C K , WANG C J , JIN S , et al. Bayes-optimal joint channel-and-data estimation for massive MIMO with low-precision ADCs[J]. IEEE Trans.on Signal Processing, 2015, 64 (10): 2541- 2556. |
27 | MO J , SCHNITER P , HEATH R W . Channel estimation in broadband millimeter wave MIMO systems with few-bit ADCs[J]. IEEE Trans.on Signal Processing, 2017, 66 (5): 1141- 1154. |
28 | ZHI K D , PAN C , REN H , et al. Uplink achievable rate of intelligent reflecting surface-aided millimeter-wave communications with low-resolution ADC and phase noise[J]. IEEE Wireless Communications Letters, 2020, |
29 |
GRAY R M , NEUHOFF D L . Quantization[J]. IEEE Trans.on Information Theory, 1998, 44 (6): 2325- 2383.
doi: 10.1109/18.720541 |
30 |
LIN X C , WU S , JIANG C X , et al. Estimation of broadband multiuser millimeter wave massive MIMO-OFDM channels by exploiting their sparse structure[J]. IEEE Trans.on Wireless Communications, 2018, 17 (6): 3959- 3973.
doi: 10.1109/TWC.2018.2818142 |
[1] | He TIAN, Chunzhu DONG, Hongcheng YIN. Radar target three-dimensional scattering centers inversion based on compressed sensing and frequency sparsity [J]. Systems Engineering and Electronics, 2022, 44(9): 2783-2790. |
[2] | Ailun XIE, Xiaobin LIU, Feng ZHAO, Xiaofeng AI, Shunping XIAO. Reconstruction method of PCM signal intermittent transmitting and receiving echo in radiation simulation [J]. Systems Engineering and Electronics, 2022, 44(3): 771-776. |
[3] | Jian DANG, Yewei LI, Yongdong ZHU, Rongbin GUO, Zaichen ZHANG, Liang WU. Progressive channel estimation method for RIS-assisted communication system [J]. Systems Engineering and Electronics, 2022, 44(3): 998-1006. |
[4] | Hai LI, Ze HUYAN, Zhijie MAO. Low-altitude wind-shear velocity ambiguity resolution based on compressed sensing under strong clutter [J]. Systems Engineering and Electronics, 2022, 44(10): 3029-3036. |
[5] | Xiaoyu MA, Jinsheng ZHANG, Ting LI. Image compress and encryption method based on Chua's circuit and compressed sensing [J]. Systems Engineering and Electronics, 2021, 43(9): 2407-2412. |
[6] | Ling ZHUANG, Huashuang YE. Improved clipping noise elimination scheme for compressed sensing [J]. Systems Engineering and Electronics, 2021, 43(8): 2341-2346. |
[7] | Tianyao HUANG, Yuhan LI, Lei WANG, Yimin LIU, Xiqin WANG. Review of Performance bounds on sparse target recovery using coherent frequency agile radar [J]. Systems Engineering and Electronics, 2021, 43(7): 1729-1736. |
[8] | Zixin ZHANG, Guoping HU, Hao ZHOU, Chenghong ZHAN. Low elevation angle estimation algorithm for MIMO radar based on sparse reconstruction of cross-covariance [J]. Systems Engineering and Electronics, 2021, 43(5): 1218-1223. |
[9] | Yingxin ZHAO, Changfeng WANG, Hong WU, Ming ZHANG, Yingjie HUANG, Legeng WANG, Zhiyang LIU. Channel estimation algorithm based on compressed sensing with maximizing negative entropy [J]. Systems Engineering and Electronics, 2021, 43(4): 1126-1132. |
[10] | Guiyong LI, Min YU, Yongkun YU. Distributed compressed sensing LMMSE channel estimation in massive MIMO systems [J]. Systems Engineering and Electronics, 2021, 43(3): 823-831. |
[11] | Feng RUAN, Xialei LU, Liang GUO, Yachao LI. Improvement of super-resolution correlated imaging based on metamaterial antenna [J]. Systems Engineering and Electronics, 2021, 43(12): 3510-3517. |
[12] | Zhixing LIU, Yinghui QUAN, Guoyao XIAO, Mengdao XING. Signal design method for integrated radar and communication based on PRI agility [J]. Systems Engineering and Electronics, 2021, 43(10): 2836-2842. |
[13] | Guisheng WANG, Guoce HUANG, Yequn WANG, Shufu DONG, Qinghua REN, Shuai WEI. Anti-interference method with intelligence for transform domain communication based on cognitive-engine [J]. Systems Engineering and Electronics, 2021, 43(1): 223-231. |
[14] | Qiang HUANG, Jianguo YU, Pengfei SHI. Complex ballistic group targets tracking based on adaptive compressed sensing [J]. Systems Engineering and Electronics, 2020, 42(8): 1710-1717. |
[15] | Ce JI, Xiaomeng ZHANG. Regularization orthogonal matching pursuit based on multiple support [J]. Systems Engineering and Electronics, 2020, 42(4): 756-763. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||