Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (12): 2708-2715.doi: 10.3969/j.issn.1001-506X.2020.12.06
Previous Articles Next Articles
Received:
2020-02-18
Online:
2020-12-01
Published:
2020-11-27
CLC Number:
Yu LU, Zheng ZHOU. Observation station track optimization of airborne external transmitter location system[J]. Systems Engineering and Electronics, 2020, 42(12): 2708-2715.
1 |
THOMA R S , ANDRICH C , GALDO G D , et al. Cooperative passive coherent location: a promising 5G service to support road safety[J]. IEEE Communications Magazine, 2019, 57 (9): 86- 92.
doi: 10.1109/MCOM.001.1800242 |
2 | PARK G H , KIM D G , KIM H J , et al. Maximum-likelihood angle estimator for multi-channel FM-radio-based passive cohe-rent location[J]. IET Radar Sonar and Navigation, 2018, 12 (6): 617- 625. |
3 | KAISER S A, CHRISTIANSON A J, NARAYANAN R M. Passive coherent location direct signal suppression using hardware mixing techniques[C]//Proc.of the Society of Photo-Optical Instrumentation Engineers Conference Series, 2017. |
4 |
KAISER S A , CHRISTIANSON A J , NARAYANAN R M , et al. Global positioning system processing methods for GPS passive coherent location[J]. IET Radar Sonar and Navigation, 2017, 11 (9): 1406- 1416.
doi: 10.1049/iet-rsn.2017.0010 |
5 | 卢雨, 周正. 空基外辐射源定位系统的可观测性分析[J]. 系统工程与电子技术, 2020, 42 (6): 1241- 1247. |
LU Y , ZHOU Z . Observability analysis of airborne external transmitter location system[J]. Systems Engineering and Electronics, 2020, 42 (6): 1241- 1247. | |
6 |
SONG X G , ZHANG Y X , LIANG D K . Dynamic input estimation and shape sensing for a nonlinear beam based on distributed fiber bragg grating sensor network[J]. Optik, 2018, 156, 896- 905.
doi: 10.1016/j.ijleo.2017.12.045 |
7 |
ARASARATNAM I , HAYKIN S , HURD T R . Cubature Kalman filtering for continuous-discrete systems: theory and simulations[J]. IEEE Trans.on Signal Processing, 2010, 58 (10): 4977- 4993.
doi: 10.1109/TSP.2010.2056923 |
8 |
LIU J , CAI B G , LU D B , et al. An enhanced RAIM method for satellite-based positioning using track constraint[J]. IEEE Access, 2019, 7, 54390- 54409.
doi: 10.1109/ACCESS.2019.2913203 |
9 |
KUDRYAVTSEVA I A , LEBEDEV M V . Application of modified unscented Kalman filter and unscented particle filter to solving tracking problems[J]. Civil Aviation High Technologies, 2018, 21 (2): 8- 21.
doi: 10.26467/2079-0619-2018-21-2-8-21 |
10 |
KONOVALOV A A . Target tracking algorithm for passive coherent location[J]. IET Radar Sonar and Navigation, 2016, 10 (7): 1228- 1233.
doi: 10.1049/iet-rsn.2015.0482 |
11 |
SONG H L , FU Y Q , LIU X . An adaptive UKF algorithm for single observer passive location in non-gaussian environment[J]. Information Technology Journal, 2012, 11 (9): 1251- 1257.
doi: 10.3923/itj.2012.1251.1257 |
12 |
XIAO Z , XIAO D P , VINCENT H , et al. Toward accurate vehicle state estimation under non-gaussian noises[J]. IEEE Internet of Things Journal, 2019, 6 (6): 10652- 10664.
doi: 10.1109/JIOT.2019.2940412 |
13 |
GUO Y F , THARMARASA R , KIRUBARAJAN T , et al. Passive coherent location with unknown transmitter states[J]. IEEE Trans.on Aerospace and Electronic Systems, 2017, 53 (1): 148- 168.
doi: 10.1109/TAES.2017.2649739 |
14 | ZHONG Y , WU X Y , HUANG S C , et al. Optimality analysis of sensor-target geometries for bearing-only passive localization in three-dimensional space[J]. Chinese Journal of Electronics, 2016, 25 (2): 197- 202. |
15 | 关欣, 舒益群, 衣晓. 基于运动外辐射源的单站定位误差分析与仿真[J]. 中国电子科学研究院学报, 2019, 14 (9): 953- 959, 1000. |
GUAN X , SHU Y Q , YI X . Error analysis and simulation of passive coherent location with moving transmitter[J]. Journal of China Academy of Electronics and Information Technology, 2019, 14 (9): 953- 959, 1000. | |
16 |
NGUYEN N H , DOGANCAY K . Optimal geometry analysis for multistatic TOA localization[J]. IEEE Trans.on Signal Processing, 2016, 64 (16): 4180- 4193.
doi: 10.1109/TSP.2016.2566611 |
17 |
ZHAO C , QUAN H W , PENG D L . An engineering approach for observer trajectory optimization in passive target tracking system[J]. Applied Mechanics and Materials, 2014, 556-562, 3223- 3226.
doi: 10.4028/www.scientific.net/AMM.556-562.3223 |
18 | 李万春, 黄成峰. 基于角度和多普勒频率的外辐射源定位系统的接收器最优航迹分析[J]. 雷达学报, 2014, 3 (6): 660- 665. |
LI W C , HUANG C F . Optimal trajectory analysis for the receiver of passive location systems using direction of arrival and Doppler measurements[J]. Journal of Radars, 2014, 3 (6): 660- 665. | |
19 | 杨俊岭, 周宇, 王维佳, 等. 基于演化深度神经网络的无人机协同无源定位动态航迹规划[J]. 科技导报, 2018, 36 (24): 26- 32. |
YANG J L , ZHOU Y , WANG W J , et al. Dynamic trajectory planning based on evolutionary depth neural network for coope-rative passive location of UAV[J]. Science & Technology Review, 2018, 36 (24): 26- 32. | |
20 | 张志虎, 赵佳旻, 刘梅. 测向交叉定位体制下平台航迹最优规划算法[J]. 指挥控制与仿真, 2018, 40 (4): 45- 51. |
ZHANG Z H , ZHAO J M , LIU M . Optimal path planning algorithm for platform under cross direction positioning system[J]. Command Control & Simulation, 2018, 40 (4): 45- 51. | |
21 |
ZHANG Y , HO K C . Multistatic localization in the absence of transmitter position[J]. IEEE Trans.on Signal Processing, 2019, 67 (18): 4745- 4760.
doi: 10.1109/TSP.2019.2929960 |
22 | 赵勇胜, 赵拥军, 赵闯. 联合角度和时差的单站无源相干定位加权最小二乘算法[J]. 雷达学报, 2016, 5 (3): 302- 311. |
ZHAO Y S , ZHAO Y J , ZHAO C . Weighted least squares algorithm for single-observer passive coherent location using DOA and TDOA measurements[J]. Journal of Radars, 2016, 5 (3): 302- 311. | |
23 | DIANETTI A D , WEISMAN R , CRASSIDIS J L . Observability analysis for improved space object characterization[J]. Journal of Guidance, Control & Dynamics, 2018, 41 (1): 137- 148. |
24 | 崔平远, 常晓华, 崔祜涛. 基于可观测性分析的深空自主导航方法研究[J]. 宇航学报, 2011, 32 (10): 2115- 2124. |
CUI P Y , CHANG X H , CUI H T . Research on observability analysis-based autonomous navigation method for deep space[J]. Journal of Astronautics, 2011, 32 (10): 2115- 2124. | |
25 |
ARRICHIELLO F , ANTONELLI G , AGUIAR A , et al. An observability metric for underwater vehicle localization using range measurements[J]. Sensors, 2013, 13 (12): 16191- 16215.
doi: 10.3390/s131216191 |
26 | HAM F , BROWN R . Observability, eigenvalues, and Kalman filtering[J]. IEEE Trans.on Aerospace and Electronic Systems, 1983, 19 (2): 269- 273. |
27 |
SALARI M , KATTAN L , LAM W H K , et al. Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure[J]. Transportation Research Part B: Methodological, 2019, 121, 216- 251.
doi: 10.1016/j.trb.2019.01.004 |
28 |
ZHAO Y , MA J L , LI X H , et al. Saliency detection and deep learning-based wildfire identification in UAV imagery[J]. Sensors, 2018, 18 (3): 712- 731.
doi: 10.3390/s18030712 |
29 | 顾晓婕, 王新民, 李文超. 多站时差无源定位探测器位置优化[J]. 传感技术学报, 2011, 24 (1): 93- 99. |
GU X J , WANG X M , LI W C . Detector position optimization in TDOA passive location[J]. Chinese Journal of Sensors and Actuators, 2011, 24 (1): 93- 99. |
[1] | Haoran SHI, Faxing LU, Jiangxin QI, Guang YANG. Cooperative target tracking of UAVs based on aided beacon [J]. Systems Engineering and Electronics, 2022, 44(7): 2302-2310. |
[2] | Yu LU, Haibin WANG. Maneuvering target tracking algorithm for airborne passive coherent localization system [J]. Systems Engineering and Electronics, 2021, 43(4): 875-882. |
[3] | Meibin QI, Jingjing HU, Peilin CHENG, Xueming JIN. Nonlinear extension of δ-generalized labeled multi-Bernoulli filtering algorithm [J]. Systems Engineering and Electronics, 2021, 43(12): 3571-3578. |
[4] | Chunming ZHAO, Yueming YAO, Wen JIN, Weiyang SONG, Haihong FANG. Design of terminal guidance system for strapdown passive radar [J]. Systems Engineering and Electronics, 2020, 42(11): 2607-2613. |
[5] | XU Hong, XIE Wenchong, WANG Yongliang. Gaussian sum cubature Kalman tracking filter with angle glint noise [J]. Systems Engineering and Electronics, 2019, 41(2): 229-235. |
[6] | GUO Xiaoting, SUN Changku, WANG Peng. Vision and inertial fusion attitude measurement based on diagonalization of matrix robust QCKF [J]. Systems Engineering and Electronics, 2018, 40(2): 402-408. |
[7] | HUANG Xiang-yuan, TANG Xia-qing, WU Meng. Research on moving base initial alignment of SINS/OD with reduced dimension CKF and smoother [J]. Systems Engineering and Electronics, 2016, 38(9): 2135-2141. |
[8] | QIAN Hua-ming, LIU Ke, MA Jun-da. Constant modulus blind beamforming algorithm based on adaptive CKF [J]. Systems Engineering and Electronics, 2016, 38(6): 1258-1261. |
[9] | ZHAO Lin, LI Yu-ling, LIU Yuan, HAO Yong, WANG Yi-peng. Optimization method research of satellite attaching track#br# planning based on genetic algorithm [J]. Systems Engineering and Electronics, 2016, 38(5): 1114-. |
[10] | WANG Hai-huan, WANG Jun. Multitarget tracking with the cubature Kalman particle probability hypothesis density filter [J]. Systems Engineering and Electronics, 2015, 37(9): 1960-1966. |
[11] | BI Hui, JIANG Cheng-long, WANG Wan-ying, ZHANG Bing-chen, HONG Wen. Track distribution optimization for tomographic synthetic aperture radar imaging [J]. Systems Engineering and Electronics, 2015, 37(8): 1787-1792. |
[12] | HUANG Xiang-yuan, TANG Xia-qing, WU Meng. Application of 5th-degree CKF in SINS nonlinear initial alignment [J]. Systems Engineering and Electronics, 2015, 37(3): 633-638. |
[13] | LI Ning, ZHU Rui-hui, ZHANG Yong-gang. Adaptive square CKF method for target tracking based on Sage-Husa algorithm [J]. Systems Engineering and Electronics, 2014, 36(10): 1899-1905. |
[14] | QIAN Hua-ming,GE Lei,HUANG Wei,PENG Yu. Reduced dimension CKF algorithm and its application in SINS initial alignment [J]. Journal of Systems Engineering and Electronics, 2013, 35(7): 1492-1497. |
[15] | QIAN Hua-ming, GE Lei, HUANG Wei, LIU Xuan. Design of CKF with correlative noises based on Bayesian estimation [J]. Journal of Systems Engineering and Electronics, 2012, 34(11): 2214-2218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||