Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (12): 4130-4142.doi: 10.12305/j.issn.1001-506X.2025.12.25
• Guidance, Navigation and Control • Previous Articles
Yang LIU, Fanyi MENG, Gang CHEN
Received:2024-12-09
Revised:2025-04-06
Online:2025-05-29
Published:2025-05-29
Contact:
Gang CHEN
CLC Number:
Yang LIU, Fanyi MENG, Gang CHEN. Reinforcement learning based disturbance rejection compensation control method for morphing aircraft[J]. Systems Engineering and Electronics, 2025, 47(12): 4130-4142.
Table 3
Reward function weights"
| 权重参数 | 数值 |
| −1, −2, −3 | |
| −10, −10, 5, 2, 10 | |
| 1.5°, 5°, 0.05°, 0.05°, 0.05° | |
| −0.1, −0.1, −0.2 | |
| 0, −0.5, 0 |
Table 4
Basic controller parameters"
| 参数项 | 取值 |
| 100, 300, 500 | |
| 100, 300, 500 | |
| 100, 300, 500 | |
| 1, 1, 1 | |
| 0.1, 0.1, 0.1 |
Table 5
Optimised basic controller parameters"
| 参数项 | 取值 |
| 100,500, | |
| 100,800, | |
| 100, | |
| 8,1,1 | |
| 0.1,0.2,0.3 |
Table 6
Disturbance condition 1"
| 参数 | TD3-DRCC | SAC-DRCC | 抗扰基础控制器 | |
Table 7
Disturbance condition 2"
| 参数 | TD3-DRCC | SAC-DRCC | 抗扰基础控制器 | |
Table 8
Average performance indicators"
| 参数 | TD3-DRCC | |
| 1 |
WEISSHAAR T A. Morphing aircraft systems: historical perspectives and future challenges[J]. Journal of Aircraft, 2013, 50 (2): 337- 353.
doi: 10.2514/1.C031456 |
| 2 |
AFONSO F, VALE J, LAU F, et al. Performance based multidisciplinary design optimization of morphing aircraft[J]. Aerospace Science and Technology, 2017, 67, 1- 12.
doi: 10.1016/j.ast.2017.03.029 |
| 3 |
AJAJ R M, FRISWELL M I, BOURCHAK M, et al. Span morphing using the GNATSpar wing[J]. Aerospace Science and Technology, 2016, 53, 38- 46.
doi: 10.1016/j.ast.2016.03.009 |
| 4 | 周雨欣, 王鹏, 汤国建, 等. 基于干扰观测器的变形飞行器预设性能控制[J]. 战术导弹技术, 2024 (4): 72- 82. |
| ZHOU Y X, WANG P, TANG G J, et al. Disturbance observer-based prescribed performance control for morphing aircraft[J]. Tactical Missile Technology, 2024 (4): 72- 82. | |
| 5 |
WU Q, LIU Z H, LIU F N, et al. LPV-based self-adaption integral sliding mode controller with L2 gain performance for a morphing aircraft[J]. IEEE Access, 2019, 7, 81515- 81531.
doi: 10.1109/ACCESS.2019.2923313 |
| 6 |
YUE T, ZHANG X Y, WANG L X, et al. Flight dynamic modeling and control for a telescopic wing morphing aircraft via asymmetric wing morphing[J]. Aerospace Science and Technology, 2017, 70, 328- 338.
doi: 10.1016/j.ast.2017.08.013 |
| 7 |
李珂澄, 刘小雄, 李煜, 等. 基于自抗扰控制的变体飞机机动控制研究[J]. 西北工业大学学报, 2024, 42 (4): 662- 672.
doi: 10.1051/jnwpu/20244240662 |
|
LI K C, LIU X X, LI Y, et al. Research on morphing aircraft maneuver control based on active disturbance rejection control[J]. Journal of Northwestern Polytechnical University, 2024, 42 (4): 662- 672.
doi: 10.1051/jnwpu/20244240662 |
|
| 8 | 孟志鹏, 杨柳庆, 王波, 等. 基于改进平衡优化算法的折叠翼飞行器自抗扰控制器设计[J]. 北京航空航天大学学报, 2024, 50 (8): 2449- 2460. |
| MENG Z P, YANG L Q, WANG B, et al. ADRC design for folding wing vehicles based on improved equilibrium optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (8): 2449- 2460. | |
| 9 | 宋慧心, 金磊. 折叠翼飞行器的动力学建模与稳定控制[J]. 力学学报, 2020, 52 (6): 1548- 1559. |
| SONG H X, JIN L. Dynamic modeling and stability control of folding wing aircraft[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 (6): 1548- 1559. | |
| 10 |
MENG F Y, WANG T J, CHEN G. Prescribed performance-based active anti-disturbance backstepping control for morphing aircraft[J]. Aerospace Science and Technology, 2024, 152, 109386.
doi: 10.1016/j.ast.2024.109386 |
| 11 |
PU J L, ZHANG Y H, GUAN Y Z, et al. Recurrent neural network-based predefined time control for morphing aircraft with asymmetric time-varying constraints[J]. Applied Mathematical Modelling, 2024, 135, 578- 600.
doi: 10.1016/j.apm.2024.06.024 |
| 12 | 浦甲伦, 詹韬, 李博皓, 等. 助推-滑翔飞行器再入过程强化学习自抗扰控制[J]. 战术导弹技术, 2024 (2): 117- 125. |
| PU J L, ZHAN T, LI B H, et al. Reinforcement learning-based active disturbance rejection control for boost-glide vehicle in re-entry phase[J]. Tactical Missile Technology, 2024 (2): 117- 125. | |
| 13 | 何海洋, 赵振根, 孔飞. 基于深度强化学习的固定翼无人机纵向控制[EB/OL]. [2024-11-09]. https://doi.org/10.13700/j.bh.1001-5965.2024.0075 |
| HE H Y, ZHAO Z G, KONG F, Longitudinal control of fixed-wing UAV based on deep reinforcement learning[EB/OL]. [2024-11-09]. https://doi.org/10.13700/j.bh.1001-5965.2024.0075. | |
| 14 | 黄旭, 柳嘉润, 贾晨辉, 等. 强化学习控制方法及在类火箭飞行器上的应用[J]. 宇航学报, 2023, 44 (5): 708- 718. |
| HUANG X, LIU J R, JIA C H, et al. Reinforcement learning control and its application on rocket-like vehicle[J]. Journal of Astronautics, 2023, 44 (5): 708- 718. | |
| 15 | LIU Y C, HUANG C Y. DDPG-based adaptive robust tracking control for aerial manipulators with decoupling approach[J]. IEEE Trans. on Cybernetics, 2021, 52 (8): 8258- 8271. |
| 16 |
WU Z H, LU J C, ZHOU Q, et al. Modified adaptive neural dynamic surface control for morphing aircraft with input and output constraints[J]. Nonlinear Dynamics, 2017, 87 (4): 2367- 2383.
doi: 10.1007/s11071-016-3196-0 |
| 17 | WU Z H, LU J C, SHI J P, et al. Robust adaptive neural control of morphing aircraft with prescribed performance[EB/OL]. [2024-11-09]. https://doi.org/10.1155/2017/1401427. |
| 18 | 路坤锋, 贾晨辉, 黄旭, 等. 面向变构型飞行器的强化学习位置姿态一体化控制方法[J]. 宇航学报, 2024, 45 (7): 1100- 1110. |
| LU K F, JIA C H, HUANG X, et al. Reinforcement learning-based integrated position and attitude control method towards morphing flight vehicles[J]. Journal of Astronautics, 2024, 45 (7): 1100- 1110. | |
| 19 | 丁溶, 曹承钰, 李繁飙, 等. 基于深度强化学习的变外形飞行器姿态控制[J]. 航天控制, 2024, 42 (2): 55- 61. |
| DING R, CAO C Y, LI F B, et al. Attitude control of morphing vehicle based on reinforcement learning[J]. Aerospace Control, 2024, 42 (2): 55- 61. | |
| 20 |
PI C H, YE W Y, CHENG S. Robust quadrotor control through reinforcement learning with disturbance compensation[J]. Applied Sciences, 2021, 11 (7): 3257.
doi: 10.3390/app11073257 |
| 21 | 马少捷, 惠俊鹏, 王宇航, 等. 变形飞行器深度强化学习姿态控制方法研究[J]. 航天控制, 2022, 40 (6): 3- 10. |
| MA S J, HUI J P, WANG Y H, et al. Research on attitude method of morphing aircraft based on deep reinforcement learning[J]. Aerospace Control, 2022, 40 (6): 3- 10. | |
| 22 |
ZHENG Y M, TAO J, SUN Q L, et al. Soft actor-critic based active disturbance rejection path following control for unmanned surface vessel under wind and wave disturbances[J]. Ocean Engineering, 2022, 247, 110631.
doi: 10.1016/j.oceaneng.2022.110631 |
| 23 | 王思鹏, 杜昌平, 郑耀. 基于强化学习的扑翼飞行器路径规划算法[J]. 控制与决策, 2022, 37 (4): 851- 860. |
| WANG S P, DU C P, ZHENG Y. Path planning algorithm for flapping-wing aircraft based on reinforcement learning[J]. Control and Decision, 2022, 37 (4): 851- 860. | |
| 24 |
JIN H Y, GAO Z Q. On the notions of normality, locality, and operational stability in ADRC[J]. Control Theory and Technology, 2023, 21, 97- 109.
doi: 10.1007/s11768-023-00131-4 |
| 25 | 韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008. |
| HAN J Q. Active disturbance rejection control technique—the technique for estimating and compensating the uncertainties[M]. Beijing: National Defense Industry Press, 2008. | |
| 26 | 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998 (1): 19- 23. |
| HAN J Q. Active disturbance rejection controller and its application[J]. Control and Decision, 1998 (1): 19- 23. | |
| 27 | LILLICRAP T P. Continuous control with deep reinforcement learning[EB/OL]. [2024-11-09]. https://arxiv.org/abs/1509.02971. |
| 28 | FUJIMOTO S, HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[C]//Proc. of the 35th International Conference on Machine Learning, 2018: 1587−1596. |
| 29 |
LIU J H, SHAN J Y, WANG J N, et al. Incremental sliding-mode control and allocation for morphing-wing aircraft fast manoeuvring[J]. Aerospace Science and Technology, 2022, 131, 107959.
doi: 10.1016/j.ast.2022.107959 |
| 30 | HAARNOJA T, ZHOU A, HARTIKAINEN K, et al. Soft actor-critic algorithms and applications[EB/OL]. [2024-11-14]. http://arxiv.org/abs/1812.05905. |
| 31 | HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]//Proc. of the 35th International Conference on Machine Learning, 2018: 1861−1870. |
| [1] | Xiaolong WEI, Yarong WU, Dengkai YAO, Guhao ZHAO. Hierarchical decision-making algorithm for UAV air combat maneuvering based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2025, 47(9): 2993-3003. |
| [2] | Yundou ZHU, Haiquan SUN, Xiaoxuan HU. Multi-satellite cooperative imaging task planning method based on pointer network architecture [J]. Systems Engineering and Electronics, 2025, 47(7): 2246-2255. |
| [3] | Linzhi MENG, Xiaojuan SUN, Yuxin HU, Bin GAO, Guoqing SUN, Wenhao MU. Reinforcement learning task scheduling algorithm for satellite on-orbit processing [J]. Systems Engineering and Electronics, 2025, 47(6): 1917-1929. |
| [4] | Kangjie ZHENG, Xinyu ZHANG, Weisong WANG, Zhensheng LIU. Intelligent ship dynamic autonomous obstacle avoidance decision based on DQN and rule [J]. Systems Engineering and Electronics, 2025, 47(6): 1994-2001. |
| [5] | Shuhan LIU, Tong LI, Fuqiang LI, Chungang YANG. Intent and situation-dual driven anti-jamming communication mechanism for data link [J]. Systems Engineering and Electronics, 2025, 47(6): 2055-2064. |
| [6] | Wei XIONG, Dong ZHANG, Zhi REN, Shuheng YANG. Research on intelligent decision-making methods for coordinated attack by manned aerial vehicles and unmanned aerial vehicles [J]. Systems Engineering and Electronics, 2025, 47(4): 1285-1299. |
| [7] | Peng MA, Rui JIANG, Bin WANG, Mengfei XU, Changbo HOU. Strategy reconstruction for resilience against intelligence jamming based on implicit opponent modeling [J]. Systems Engineering and Electronics, 2025, 47(4): 1355-1363. |
| [8] | Kaiqiang TANG, Huiqiao FU, Jiasheng LIU, Guizhou DENG, Chunlin CHEN. Hierarchical optimization research of constrained vehicle routing based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2025, 47(3): 827-841. |
| [9] | Xiarong CHEN, Jichao LI, Gang CHEN, Peng LIU, Jiang JIANG. Portfolio of weapon system-of-systems based on heterogeneous information networks [J]. Systems Engineering and Electronics, 2025, 47(3): 855-861. |
| [10] | Yaozhong ZHANG, Zhuoran WU, Jiandong ZHANG, Qiming YANG, Guoqing SHI, Zixiang XU. UAV many-to-one pursuit-evasion game based on ME-DDPG algorithm [J]. Systems Engineering and Electronics, 2025, 47(10): 3288-3299. |
| [11] | Dong SUI, Xiangrong CAI. Continual learning mechanism for intelligent flight conflict resolution algorithm [J]. Systems Engineering and Electronics, 2025, 47(10): 3300-3312. |
| [12] | Tingyu ZHANG, Ying ZENG, Nan LI, Hongzhong HUANG. Spacecraft power-signal composite network optimization algorithm based on DRL [J]. Systems Engineering and Electronics, 2024, 46(9): 3060-3069. |
| [13] | Yuqi XIA, Yanyan HUANG, Qia CHEN. Path planning for unmanned vehicle reconnaissance based on deep Q-network [J]. Systems Engineering and Electronics, 2024, 46(9): 3070-3081. |
| [14] | Zhipeng YANG, Zihao CHEN, Chang ZENG, Song LIN, Jindi MAO, Kai ZHANG. Online route planning decision-making method of aircraft in complex environment [J]. Systems Engineering and Electronics, 2024, 46(9): 3166-3175. |
| [15] | Hongda GUO, Jingtao LOU, Youchun XU, Peng YE, Yongle LI, Jinsheng CHEN. Event-triggered communication of multiple unmanned ground vehicles collaborative based on MADDPG [J]. Systems Engineering and Electronics, 2024, 46(7): 2525-2533. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||