Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (12): 4084-4092.doi: 10.12305/j.issn.1001-506X.2025.12.10
• Sensors and Signal Processing • Previous Articles
Enji LU1,2, Ling WANG1,2,*, Daiyin ZHU1,2, Ye ZHOU3
Received:2024-09-27
Revised:2025-01-16
Online:2025-04-17
Published:2025-04-17
Contact:
Ling WANG
CLC Number:
Enji LU, Ling WANG, Daiyin ZHU, Ye ZHOU. Weather radar thunderstorm prediction method based on lightweight three-dimensional temporal convolutional network[J]. Systems Engineering and Electronics, 2025, 47(12): 4084-4092.
Table 3
Performance evaluation of the memory decoupling ST-LSTM network on the test set"
| 预测时间/min | CSI | POD | FAR | ||||||||
| 30 dBz | 40 dBz | 50 dBz | 30 dBz | 40 dBz | 50 dBz | 30 dBz | 40 dBz | 50 dBz | |||
| 6 | 0.815 | 0.653 | 0.360 | 0.865 | 0.715 | 0.428 | 0.069 | 0.130 | 0.170 | ||
| 30 | 0.590 | 0.358 | 0.135 | 0.649 | 0.412 | 0.164 | 0.131 | 0.203 | 0.308 | ||
| 60 | 0.335 | 0.149 | 0.053 | 0.475 | 0.228 | 0.054 | 0.148 | 0.240 | 0.309 | ||
| 4 |
RINEHART R E, GARVEY E T. Three-dimensional storm motion detection by conventional weather radar[J]. Nature, 1978, 273 (5660): 287- 289.
doi: 10.1038/273287a0 |
| 5 | SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]// Proc. of the 29th International Conference on Neural Information Processing Systems, 2015: 802−810. |
| 6 | JING J R, LI Q, PENG X, et al. HPRNN: a hierarchical sequence prediction model for long-term weather radar echo extrapolation[C]// Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 4142−4146. |
| 7 | WANG Y B, LONG M S, WANG J M, et al. PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]// Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 879−888. |
| 8 | WANG Y B, GAO Z F, LONG M S, et al. PredRNN++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[C]// Proc. of the 35th International Conference on Machine Learning, 2018, 80: 5123−5132. |
| 9 | WANG Y B, WU H X, ZHANG J J, et al. PredRNN: a recurrent neural network for spatiotemporal predictive learning [J]. IEEE Trans. on Pattern Analysis and Aachine Intelligence, 2023, 45(2): 2208−2225. |
| 10 | 何诗扬, 汪玲, 朱岱寅, 等. 基于时空记忆解耦RNN的雷暴预测方法[J]. 系统工程与电子技术, 2023, 45 (11): 3474- 3480. |
| HE S Y, WANG L, ZHU D Y, et al. Thunderstorm prediction method based on spatio temporal memory decoupling RNN[J]. Systems Engineering and Electronics, 2023, 45 (11): 3474- 3480. | |
| 11 |
CHEN Q, LIU Y B, GE M F, et al. A novel bayesian-optimization-based adversarial TCN for RUL prediction of bearings[J]. IEEE Sensors Journal, 2022, 22 (21): 20968- 20977.
doi: 10.1109/JSEN.2022.3209894 |
| 12 | TONG C, ZHANG L H, LI H, et al. Temporal inception convolutional network based on multi-head attention for ultra-short-term load forecasting [J]. IET Generation, Transmission & Distribution, 2022, 16(8): 1680−1696. |
| 13 | ALTAHERI H, MUHAMMAD G, ALSULAIMAN M. Physics-informed attention temporal convolutional network for EEG-based motor imagery classification[J]. IEEE Trans. on Industrial Informatics, 2022, 19 (2): 2249- 2258. |
| 14 | 李云峰, 高云鹏, 张蓬鹤, 等. 多目标优化时域卷积神经网络的窃电行为高准确检测算法 [J]. 电网技术, 2024, 48(8): 3449−3458. |
| LI Y F, GAO Y P, ZHANG P H, et al. High-accuracy detection algorithm of electricity theft behavior based on multi-objective optimization time-domain convolutional neural network [J]. Power System Technology, 2024, 48(8): 3449−3458. | |
| 15 |
ZHANG B, WANG S, DENG L, et al. Ship motion attitude prediction model based on IWOA-TCN-Attention[J]. Ocean Engineering, 2023, 272, 113911.
doi: 10.1016/j.oceaneng.2023.113911 |
| 16 |
SHU J, LIAO Y C, LI J H. Spatial-temporal attention TCN-based link prediction for opportunistic network[J]. Electronics, 2024, 13 (5): 957- 970.
doi: 10.3390/electronics13050957 |
| 17 | 张梦凡, 丁兵兵, 贾国栋, 等. 基于TCN-BiLSTM与LSTM模型对比预测北洛河径流[J]. 北京林业大学学报, 2024, 46 (4): 141- 148. |
| ZHANG M F, DING B B, JIA G D, et al. Comparative prediction of runoff in the Beiluo River, Shaanxi Province of Northwestern China based on TCN-BiLSTM and LSTM models[J]. Journal of Beijing Forestry University, 2024, 46 (4): 141- 148. | |
| 18 | 焦卫东, 杨蓓. MDAT-Net: 一种融合MSC和时空注意力的TCN航迹预测方法 [EB/OL]. [2024-09-27]. https://doi.org/10.13700/j.bh.1001-5965.2023.0717. |
| JIAO W D, YANG B. MDAT-Net: a TCN trajectory prediction method fusing MSC and spatio-temporal attention [EB/OL]. [2024-09-27]. https://doi.org/10.13700/j.bh.1001-5965.2023.0717. | |
| 19 | 杨达, 刘家威, 郑斌, 等. 基于时域卷积网络与注意力机制的车辆换道轨迹预测模型[J]. 交通运输系统工程与信息, 2024, 24 (2): 114- 126. |
| YANG D, LIU J W, ZHENG B, et al. A vehicle lane-changing trajectory prediction model based on temporal convolutional networks and attention mechanism[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24 (2): 114- 126. | |
| 20 |
YE W, KUANG H, DENG K, et al. LGTCN: a spatial–temporal traffic flow prediction model based on local-global feature fusion temporal convolutional network[J]. Applied Sciences, 2024, 14 (19): 8847- 8862.
doi: 10.3390/app14198847 |
| 21 | SHI X J, GAO Z H, LAUSEN L, et al. Deep learning for precipitation nowcasting: a benchmark and a new model[C]//Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 5622−5632. |
| 22 |
AYZEL G, HEISTERMANN M, WINTERRATH T. Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1)[J]. Geoscientific Model Development, 2019, 12 (4): 1387- 1402.
doi: 10.5194/gmd-12-1387-2019 |
| 23 | QIN Y J, GAN F F, XIA B Z, et al. Remaining useful life estimation of bearing via temporal convolutional networks enhanced by a gated convolutional unit[J]. Engineering Applications of Artificial Intelligence, 2024 (133): 108308. |
| 1 |
MULLER R, BARLEBEN A, HAUSSLER S, et al. A novel approach for the global detection and nowcasting of deep convection and thunderstorms[J]. Remote Sensing, 2022, 14 (14): 3372- 3384.
doi: 10.3390/rs14143372 |
| 2 |
D’AMATO G, VITALE C, D’AMATO M, et al. Thunderstorm-related asthma: what happens and why[J]. Clinical and Experimental Allergy, 2016, 46 (3): 390- 396.
doi: 10.1111/cea.12709 |
| 3 |
ZHANG F G, LAI C, CHEN W J. Weather radar echo extrapolation method based on deep learning[J]. Atmosphere, 2022, 13 (5): 815- 834.
doi: 10.3390/atmos13050815 |
| 24 |
RAZA A, UDDIN J, ALMUHAIMEED A, et al. AIPs-SnTCN: predicting anti-inflammatory peptides using fastText and transformer encoder-based hybrid word embedding with self-normalized temporal convolutional networks[J]. Chemical Information and Modeling, 2023, 63 (21): 6537- 6554.
doi: 10.1021/acs.jcim.3c01563 |
| 25 | OORD D V A, KALCHBRENNER N, KAVUKCUOGLU K. Pixel recurrent neural networks [C]//Proc. of the International Conference on Machine Learning, 2016: 1747−1756. |
| 26 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 40 (4): 834- 848. |
| 27 | OORD D V A, DIELEMAN S, ZEN H, et al. WaveNet: a generative model for raw audio [EB/OL]. [2024-09-27]. https://www.arxiv.org.pdf.1609.03499. |
| 28 |
GILLELAND E, AHIJEVYCH D, BROWN B G, et al. Intercomparison of spatial forecast verification methods[J]. Weather and Forecasting, 2009, 24 (5): 1416- 1430.
doi: 10.1175/2009WAF2222269.1 |
| 29 |
MARZBAN C. Scalar measures of performance in rare-event situations[J]. Weather and Forecasting, 1998, 13 (3): 753- 763.
doi: 10.1175/1520-0434(1998)013<0753:SMOPIR>2.0.CO;2 |
| 30 | 龚勋, 胡嘉骏, 徐年平, 等. 基于深度学习的多普勒气象雷达回波外推短临预报对比研究[J]. 中国军转民, 2022 (13): 76- 80. |
| GONG X, HU J J, XU N P, et al. A comparative study of Doppler weather radar echo extrapolation short prognosis based on deep learning[J]. Defense Industry Conversion in China, 2022 (13): 76- 80. |
| [1] | Kaiming LI, Yuanpeng ZHANG, Ying LUO, Xiaonan DAI. Research progress on radar target recognition of ballistic missile [J]. Systems Engineering and Electronics, 2025, 47(9): 2870-2889. |
| [2] | Ce JI, Xiangyu MA, Xiaoyu MU, Jiayi ZHAO. TS-GRU-VTA: vehicle channel estimation scheme based on deep learning [J]. Systems Engineering and Electronics, 2025, 47(9): 3093-3098. |
| [3] | Xiaowei YAN, Chong LING, Shengbin SHI. Design and implementation of a rapid detection system for surface unexploded submunitions [J]. Systems Engineering and Electronics, 2025, 47(8): 2639-2645. |
| [4] | Wanying ZHANG, Youbing GAO, Zeyi LI, Pengfei LI, Wei ZHANG. Background signal suppression algorithm based on dual-path feature fusion net [J]. Systems Engineering and Electronics, 2025, 47(7): 2406-2413. |
| [5] | Xinzheng ZHANG, Mengke YAN, Xiaolin ZHU. Noise pseudo-label tolerant semi-supervised SAR target recognition [J]. Systems Engineering and Electronics, 2025, 47(6): 1796-1805. |
| [6] | Zhijie JIANG, Heng SONG, Nan HU, Lanxi DUAN, Ping CAO. Target recognition and classification algorithm of MMW radar in tunnel [J]. Systems Engineering and Electronics, 2025, 47(5): 1453-1460. |
| [7] | Qianqi NIE, Minghui SHA, Yingshen ZHU, Chongyu WANG, Nianqiang CUI. Radar multi-component signal recognition method based on blind source separation combined with singular spectrum analysis [J]. Systems Engineering and Electronics, 2025, 47(4): 1168-1175. |
| [8] | Lei YUAN, Yanjuan YANG, Yi GUO, Peng DAI. Deep learning-based semi-blind identification algorithm for code rates of LDPC codes with correlated noise [J]. Systems Engineering and Electronics, 2025, 47(4): 1335-1345. |
| [9] | Xiarun SHEN, Ruonan LI, Haotian ZHANG. Server KPI anomaly detection based on CVAE-LSTM [J]. Systems Engineering and Electronics, 2025, 47(3): 1019-1027. |
| [10] | Xiaolin LIU, Mengjiao GUO, Zhuo LI. Adaptive graph convolutional recurrent network prediction method for flight delay based on Dueling DQN optimization [J]. Systems Engineering and Electronics, 2025, 47(2): 568-579. |
| [11] | Weihong FU, Xinyu ZHANG, Naian LIU. Single-channel blind source separation algorithm for co-frequency and co-modulation based on multi-scale fusion neural network [J]. Systems Engineering and Electronics, 2025, 47(2): 641-649. |
| [12] | Wenzhong ZHANG, Changbo HOU, Pengqi ZHAO, Sicheng LIU. UAV target track correlation based on GCN [J]. Systems Engineering and Electronics, 2025, 47(12): 4005-4011. |
| [13] | Jie JIANG, Wenjun YAN, Qing LING, Limin ZHANG. Tiny objects detection method for unmanned aerial vehicle ship images based on STOD [J]. Systems Engineering and Electronics, 2025, 47(11): 3559-3567. |
| [14] | Fei GAO, Ruida XI, Xiangwei XING, Yan XING, Qiang ZHANG, Hongxing DANG. Image dataset simulation constructing for SAR active interference classification and recognition [J]. Systems Engineering and Electronics, 2025, 47(10): 3257-3269. |
| [15] | Yuyu ZHAO, Yaopeng LIU, Yuxiao WANG. Attitude measurement approach for gyrowheel based on integrating mechanism and data [J]. Systems Engineering and Electronics, 2025, 47(10): 3455-3463. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||