Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (11): 3531-3542.doi: 10.12305/j.issn.1001-506X.2025.11.02
• Electronic Technology • Previous Articles
Yingjie SHI1,2(
), Dongdong ZHOU1, Tairan LEI1, San’ao HUANG3, Ke XU1,*
Received:2025-02-22
Online:2025-11-25
Published:2025-12-08
Contact:
Ke XU
E-mail:13488830977@163.com
CLC Number:
Yingjie SHI, Dongdong ZHOU, Tairan LEI, San’ao HUANG, Ke XU. Optimized longitudinal wave EMAT for non-contact pipeline liquid level monitoring[J]. Systems Engineering and Electronics, 2025, 47(11): 3531-3542.
| 1 | WHEATLEY S, SOVACOOL B K, SORNETTE D. Reassessing the safety of nuclear power[J]. Energy Research & Social Science, 2016, 15, 96- 100. |
| 2 | DENG Z G, ZHU B W, WU Q, et al. Research on application of high temperature and high pressure radar liquid level measurement in nuclear power plant[J]. New Energy Power Generation Automation and Intelligent Technology, 2023, 1055: 57–72. |
| 3 | SHARP E H, BERNARD R, BOLTON G, et al. Acoustic frequency analysis of the vibrational resonant frequencies of special nuclear material containment[J]. NDT & E International, 2023, 140, 102946. |
| 4 | MARTINHO L M, ANDRADE J P T S, KANG L, et al. Advances on the side-shifted dual periodic permanent magnet electromagnetic acoustic transducers design for unidirectional generation of shear horizontal ultrasonic guided wave[C]//Proc. of the 2nd IEEE UFFC Latin America Ultrasonics Symposium, 2024. |
| 5 | BWX Technologies Incorporated. Method for determining liquid level in a container using an electromagnetic acoustic transducer (EMAT)[P]. US: US6176132B1, 2001-01-23. |
| 6 | LIU F L, LI J, LONG J, et al. A novel liquid-level measurement method based on electromagnetic acoustic guided waves[C]//Proc. of the IEEE International Instrumentation and Measurement Technology Conference, 2023. |
| 7 |
SHI Y J, JIN X M, JIANG J H, et al. Non-contact and non-invasive water level measurement outside metal pipes with electromagnetic acoustic resonance[J]. Measurement, 2025, 239, 115451.
doi: 10.1016/j.measurement.2024.115451 |
| 8 |
SHI Y J, LEI T R, JIANG J H, et al. Thickness measurements with EMAT based on fuzzy logic[J]. Sensors, 2024, 24 (13): 4066.
doi: 10.3390/s24134066 |
| 9 |
PEI N, ZHAO B, BOND L J, et al. Analysis of the directivity of longitudinal waves based on double-fold coil phased EMAT[J]. Ultrasonics, 2022, 125, 106788.
doi: 10.1016/j.ultras.2022.106788 |
| 10 | RIEGER K, ERNI D, RUETER D. Unidirectional emission and detection of Lamb waves based on a powerful and compact coils-only EMAT[J]. NDT & E International, 2021, 122, 102492. |
| 11 |
DANG G, PEI C, LIU T H, et al. Development of a longitudinal wave EMAT with high conversion efficiency[J]. IEEE Sensors Journal, 2022, 22 (20): 19424- 19430.
doi: 10.1109/JSEN.2022.3201988 |
| 12 |
ZHANG J J, LIU M, JIA X J, et al. Numerical study and optimal design of the butterfly coil EMAT for signal amplitude enhancement[J]. Sensors, 2022, 22 (13): 4985.
doi: 10.3390/s22134985 |
| 13 | 蔡智超, 李毅博. 基于Halbach阵列电磁超声纵波换能器优化设计[J]. 电工技术学报, 2021, 36 (21): 4408- 4417. |
| CAI Z C, LI Y B. Optimum design of electromagnetic acoustic longitudinal wave transducer based on Halbach array[J]. Transactions of China Electrotechnical Society, 2021, 36 (21): 4408- 4417. | |
| 14 | ZHANG T, YANG X Q, LI M, et al. Enhancing unilateral EMAT performance through topological optimization of Halbach permanent magnet arrays[J]. NDT & E International, 2024, 146, 103172. |
| 15 |
LIU H B, LIU T R, LI Y P, et al. Uniaxial stress in-situ measurement using EMAT shear and longitudinal waves: transducer design and experiments[J]. Applied Acoustics, 2021, 175, 107781.
doi: 10.1016/j.apacoust.2020.107781 |
| 16 | LIANG B, YU Y, LI Z C, et al. High-temperature transduction efficiency analysis of the lorentz force mechanism EMAT[J]. IEEE Trans. on Instrumentation and Measurement, 2025, 74: 9508312. |
| 17 | REN W P, XU K, DIXON S, et al. A study of magnetostriction mechanism of EMAT on low-carbon steel at high temperature[J]. NDT & E International, 2019, 101, 34- 43. |
| 18 | CHEN W W, LU C, LI X B, et al. A novel laser-EMAT ultrasonic longitudinal wave resonance method for wall thickness measurement at high temperatures[J].Ultrasonics, 2024, 141:107340. |
| 19 | MACLAUCHLAN D T, CLARK S, COX B, et al. Recent advancements in the application of EMATS to NDE[C]//Proc. of the 37th Annual Conference of the IEEE Industrial Electronics Society, 2004: 1154-1161. |
| 20 |
ZUO P. Underwater quantitative thickness mapping through marine growth for corrosion measurement using shear wave EMAT with high lift-off performance[J]. Ultrasonics, 2024, 143, 107426.
doi: 10.1016/j.ultras.2024.107426 |
| 21 | ZHAI G F, LIANG B, LI X, et al. High-temperature EMAT with double-coil configuration generates shear and longitudinal wave modes in paramagnetic steel[J]. NDT & E International, 2022, 125, 102572. |
| 22 |
ZHANG X, LI W W, LI B, et al. A new design of the dual-mode and pure longitudinal EMAT by using a radial-flux-focusing magnet[J]. Sensors, 2022, 22 (4): 1316.
doi: 10.3390/s22041316 |
| 23 | THON A, PAINCHAUD A G, LE D A, et al. On the use of a linear array EMAT for remote thickness gauging using the reflected modes on a steel pipe[J]. NDT & E International, 2023, 139, 102917. |
| 24 |
CHEN T, LIU S C, CHEN L D, et al. Characterization of small delamination defects by multilayer flexible EMAT[J]. IEEE Sensors Journal, 2024, 24 (12): 19210- 19219.
doi: 10.1109/JSEN.2024.3392694 |
| 25 | WANG S J, LI Z C, KANG L, et al. Modeling and comparison of three bulk wave EMATs[C]//Proc. of the 37th Annual Conference of the IEEE Industrial Electronics Society, 2012: 2645−2650. |
| 26 |
HIRAO M, OGI H. Electromagnetic acoustic resonance and materials characterization[J]. Ultrasonics, 1997, 35 (6): 413- 421.
doi: 10.1016/S0041-624X(97)00030-9 |
| 27 | LIANG B, LI Z C, ZHAI G F, et al. Enhancing the lift-off performance of EMATs by applying an Fe3O4 coating to a test specimen[J]. IEEE Trans. on Instrumentation and Measurement, 2022, 72, 9502104. |
| 28 |
QIN S R, ZHONG Y M. A new envelope algorithm of Hilbert–Huang transform[J]. Mechanical Systems and Signal Processing, 2006, 20 (8): 1941- 1952.
doi: 10.1016/j.ymssp.2005.07.002 |
| 29 |
BOUDRAA A O, CEXUS J C. EMD-based signal filtering[J]. IEEE Trans. on Instrumentation and Measurement, 2007, 56 (6): 2196- 2202.
doi: 10.1109/TIM.2007.907967 |
| 30 |
SUN Y N, XUE B, ZHANG M J, et al. Automatically designing CNN architectures using the genetic algorithm for image classification[J]. IEEE Trans. on Cybernetics, 2020, 50 (9): 3840- 3854.
doi: 10.1109/TCYB.2020.2983860 |
| 31 | ULLAH K, AHSAN M, HASANAT S M, et al. Short-term load forecasting: a comprehensive review and simulation study with CNN-LSTM hybrids approach[J]. IEEE Access, 2024, 12, 111881. |
| [1] | Mingyu JIANG, Shunsheng ZHANG, Siyao XIAO. SAR target recognition based on lightweight cross-attention convolutional neural network [J]. Systems Engineering and Electronics, 2025, 47(9): 2853-2861. |
| [2] | Wenjie CHEN, Pu ZHANG, Gaoxiang SHI, Lin LIU, Xuan LIU. Blind recognition of LDPC codes based on the convolutional neural network with cosine check relationship [J]. Systems Engineering and Electronics, 2025, 47(9): 3117-3125. |
| [3] | Amin DUAN, Zhaohui ZHANG. Quadratic decomposition-based cellular traffic prediction with hybrid neural network [J]. Systems Engineering and Electronics, 2025, 47(5): 1687-1697. |
| [4] | Lei YU, Qiuyue DENG, Liying ZHENG, Haoyu WU. Second-order progressive feature fusion network for image super-resolution reconstruction [J]. Systems Engineering and Electronics, 2024, 46(2): 391-400. |
| [5] | Ran JI, Maosen XIAO, Shuo LI, Yu LIU, Zhanyi LUO, Jiawei CHENG. Research on MRTD objective testing method based on machine learning [J]. Systems Engineering and Electronics, 2024, 46(10): 3265-3270. |
| [6] | Yanyan HUANG, Shaoyan GAI, Feipeng DA. Image matching algorithm based on attention mechanism of three branch spatial transformation [J]. Systems Engineering and Electronics, 2023, 45(11): 3363-3373. |
| [7] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
| [8] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
| [9] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
| [10] | Hengyan LIU, Limin ZHANG, Wenjun YAN, Zhaogen ZHONG, Qing LING, Xiaojun LIANG. LDPC decoding based on WBP-CNN algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 1030-1035. |
| [11] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
| [12] | Xi ZHANG, Zhengmeng JIN, Yaqin JIANG. Total variation algorithm with depth image priors for image colorization [J]. Systems Engineering and Electronics, 2022, 44(2): 385-393. |
| [13] | Qinzhe LYU, Yinghui QUAN, Minghui SHA, Shuxian DONG, Mengdao XING. Ensemble deep learning-based intelligent classification of active jamming [J]. Systems Engineering and Electronics, 2022, 44(12): 3595-3602. |
| [14] | Ziyan LIU, Shanshan MA, Jing LIANG, Mingcheng ZHU, Lei YUAN. Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system [J]. Systems Engineering and Electronics, 2022, 44(1): 307-312. |
| [15] | Bo DAN, Zhequan FU, Shan GAO, Tao JIAN. Full-polarization high resolution range profile recognition technology for sea surface target based on convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(1): 108-116. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||