Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (8): 2570-2580.doi: 10.12305/j.issn.1001-506X.2025.08.15
• Systems Engineering • Previous Articles
Chao ZHANG1,2,*(), Yingtao FANG1,3(
), Zhijie DONG4, Shilie HE1,5, Zhenwei ZHOU5
Received:
2024-05-08
Online:
2025-08-25
Published:
2025-09-04
Contact:
Chao ZHANG
E-mail:caec_zc@nwpu.edu.cn;fangyingtao@yeah.net
CLC Number:
Chao ZHANG, Yingtao FANG, Zhijie DONG, Shilie HE, Zhenwei ZHOU. Testability index allocation method based on fuzzy analytic network process and group decision-making[J]. Systems Engineering and Electronics, 2025, 47(8): 2570-2580.
Table 2
Meaning and symbol of evaluation criteria for testability index influence factors weights"
评价准则 | 一级指标元素 | 元素内部相关性 |
系统顶层需求( | 任务要求( | |
性能要求( | ||
战技指标要求( | ||
结构功能要求( | ||
可靠性要求( | 保障性( | |
可靠性( | ||
安全性( | ||
测试性( | ||
环境适应性( | ||
维修性( | ||
客观约束条件( | 体积和重量( | |
可利用可达性( | ||
故障率( | ||
类似测试信息( | ||
费用成本( |
Table 4
Unweighted super matrix"
元素 | ||||||||||||||||||||
0 | 0.195 | 0 | 0.119 | 0.143 | 0.110 | 1 | 0.087 | 0.115 | 0 | 0.125 | 0.092 | 0.107 | 0.133 | 0.133 | 0.096 | 0.250 | 0 | 0 | 0 | |
0.692 | 0 | 0.750 | 0.224 | 0.286 | 0.243 | 0 | 0.170 | 0.245 | 0 | 0.250 | 0.155 | 0.206 | 0.244 | 0.243 | 0.276 | 0.750 | 0.333 | 0.750 | 0.238 | |
0 | 0.407 | 0 | 0.199 | 0.286 | 0.280 | 0 | 0.312 | 0.264 | 0 | 0.250 | 0.309 | 0.306 | 0.266 | 0.277 | 0.298 | 0 | 0.528 | 0 | 0.625 | |
0 | 0.153 | 0 | 0.205 | 0.143 | 0.139 | 0 | 0.200 | 0.141 | 1 | 0.125 | 0.200 | 0.154 | 0.144 | 0.133 | 0.170 | 0 | 0 | 0 | 0.137 | |
0 | 0.104 | 0.250 | 0.113 | 0 | 0.114 | 0 | 0.095 | 0.111 | 0 | 0.125 | 0.160 | 0.107 | 0.069 | 0.070 | 0.072 | 0 | 0.140 | 0.250 | 0 | |
0.308 | 0.140 | 0 | 0.140 | 0.143 | 0.114 | 0 | 0.135 | 0.123 | 0 | 0.125 | 0.084 | 0.120 | 0.144 | 0.144 | 0.087 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0.107 | 0 | 0 | 0 | 0.196 | 0 | 0 | 0.196 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0.163 | 0.196 | 0.196 | 0.141 | 0.196 | 0.196 | 0 | 0 | 0 | 0 | 0.493 | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 | 0 | 0.327 | 0 | 0 | |
0.540 | 0.493 | 0.493 | 0.185 | 0.493 | 0.493 | 0 | 0.493 | 0 | 0 | 0 | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 | 0 | 0.413 | 0 | 0 | |
0 | 0 | 0 | 0.245 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0.297 | 0.311 | 0.311 | 0.323 | 0.311 | 0.311 | 1 | 0.311 | 1 | 1 | 0.311 | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 | 0 | 0.260 | 0 | 0 | |
0.098 | 0.162 | 0.189 | 0.190 | 0.187 | 0.171 | 0 | 0.180 | 0.188 | 0 | 0.194 | 0 | 0 | 0 | 0 | 0 | 0.184 | 0.187 | 0 | 0 | |
0.441 | 0.379 | 0.357 | 0.316 | 0.306 | 0.259 | 0 | 0.286 | 0.344 | 0 | 0.249 | 0 | 0 | 0 | 0 | 0 | 0.408 | 0.330 | 0 | 0 | |
0.249 | 0.227 | 0.237 | 0.274 | 0.195 | 0.225 | 0 | 0.197 | 0.188 | 0 | 0.222 | 0 | 0 | 0 | 0 | 0 | 0.203 | 0.229 | 0 | 0 | |
0.119 | 0.106 | 0.109 | 0.110 | 0.124 | 0.149 | 0 | 0.156 | 0.136 | 0 | 0.141 | 0 | 0 | 0 | 0 | 0 | 0.103 | 0.141 | 0 | 0 | |
0.092 | 0.126 | 0.109 | 0.110 | 0.187 | 0.196 | 0 | 0.180 | 0.145 | 0 | 0.194 | 0 | 0 | 0 | 0 | 0 | 0.103 | 0.112 | 0 | 0 | |
0 | 0.311 | 0 | 0.333 | 0.250 | 0.138 | 0.750 | 0.594 | 1 | 0 | 0 | 0.250 | 0.333 | 0.333 | 0.333 | 0.250 | 0 | 0 | 0 | 0 | |
0 | 0.493 | 0.667 | 0.333 | 0.750 | 0.276 | 0 | 0.249 | 0 | 0 | 0 | 0.750 | 0.667 | 0.667 | 0.667 | 0.750 | 0 | 0 | 0 | 0 | |
0 | 0 | 0.333 | 0.333 | 0 | 0.391 | 0 | 0.157 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0.196 | 0 | 0 | 0 | 0.195 | 0.250 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Table 7
Expert evaluation and group decision results"
权重 | 专家1 | 专家2 | 专家3 | 专家4 | 专家5 | 组合权重 | 奇异点 | |
第1次去除 | 第2次去除 | |||||||
0.219 | 0.205 | 0.200 | 0.300 | 0.220 | 0.213 1 | 0.300 | 无 | |
0.363 | 0.325 | 0.290 | 0.310 | 0.280 | 0.315 3 | 无 | 无 | |
0.180 | 0.210 | 0.220 | 0.180 | 0.200 | 0.199 7 | 无 | 无 | |
0.118 | 0.070 | 0.120 | 0.100 | 0.110 | 0.114 1 | 0.070 | 无 | |
0.120 | 0.190 | 0.170 | 0.110 | 0.190 | 0.157 7 | 无 | 无 |
Table 8
Testability index allocation work order"
名称代号 | 数量 | 影响因素 | ||||||||
二次电源 | 1 | 0.000 09 | 5.930 2 | 0.990 3 | 0.994 4 | 6 | 9 | 5 | 3 | 3 |
X轴动调陀螺 | 1 | 0.000 07 | 5.070 1 | 0.979 2 | 0.986 9 | 5 | 4 | 5 | 7 | 6 |
YZ轴动调陀螺 | 1 | 0.000 14 | 5.922 5 | 0.990 3 | 0.994 4 | 9 | 4 | 5 | 7 | 6 |
X轴再平衡放大器组合 | 1 | 0.000 02 | 3.788 3 | 0.935 6 | 0.954 2 | 1 | 3 | 5 | 6 | 6 |
YZ轴再平衡放大器组合 | 1 | 0.000 04 | 4.214 5 | 0.955 6 | 0.969 8 | 3 | 3 | 5 | 6 | 6 |
X轴角速度计 | 1 | 0.000 07 | 3.684 3 | 0.929 5 | 0.949 4 | 4 | 3 | 4 | 4 | 4 |
Y轴角速度计 | 1 | 0.000 07 | 3.684 3 | 0.929 5 | 0.949 4 | 4 | 3 | 4 | 4 | 4 |
Z轴角速度计 | 1 | 0.000 07 | 3.684 3 | 0.929 5 | 0.949 4 | 4 | 3 | 4 | 4 | 4 |
滤波放大电路 | 1 | 0.000 04 | 4.787 9 | 0.973 2 | 0.982 8 | 3 | 7 | 7 | 2 | 2 |
模拟-数字转换电路 | 1 | 0.000 01 | 4.631 7 | 0.969 3 | 0.979 9 | 1 | 7 | 7 | 2 | 2 |
总计 | 10 | 0.000 62 | — | 0.963 | 0.975 | — | — | — | — | — |
Table 9
Comparison of allocation results across different methods"
单元编号 | 故障率分配法 | 综合加权分配法 | 反正切函数分配法 | 本方法 | ||||||||
30 | 0.278 8 | 0.259 5 | 0.900 0 | 0.763 6 | 0.880 7 | 0.755 4 | 0.922 9 | 0.856 9 | ||||
30 | 0.278 8 | 0.259 5 | 0.900 0 | 0.763 6 | 0.880 7 | 0.755 4 | 0.947 5 | 0.893 7 | ||||
100 | 0.929 3 | 0.865 0 | 0.940 0 | 0.871 8 | 0.963 8 | 0.929 7 | 0.937 6 | 0.878 5 | ||||
150 | 1.394 0 | 1.297 6 | 0.980 0 | 0.980 0 | 0.975 9 | 0.952 7 | 0.972 7 | 0.936 1 | ||||
50 | 0.464 7 | 0.432 5 | 0.940 0 | 0.871 8 | 0.927 9 | 0.855 9 | 0.924 6 | 0.859 4 | ||||
综合 | 360 | 0.967 7 | 0.899 9 | 0.950 0 | 0.898 8 | 0.950 0 | 0.900 0 | 0.950 0 | 0.900 0 |
1 | 石君友. 测试性设计分析与验证[M]. 北京: 国防工业出版社, 2011. |
SHI J Y. Testability design analysis and verification[M]. Beijing: National Defense Industry Press, 2011. | |
2 |
LI T M, SI X S, YANG Z H, et al. NHPP testability growth model considering testability growth effort, rectifying delay, and imperfect correction[J]. IEEE Access, 2020, 8, 9072- 9083.
doi: 10.1109/ACCESS.2019.2962528 |
3 | 陆宁云, 李洋, 姜斌, 等. 复杂系统测试性设计与故障诊断策略研究进展[J]. 系统工程与电子技术, 2024, 46 (7): 2359- 2373. |
LU N Y, LI Y, JIANG B, et al. Overview of design of testability and dot based fault diagnosis strategy for complex systems[J]. Systems Engineering and Electronics, 2024, 46 (7): 2359- 2373. | |
4 | 邱静, 刘冠军, 杨鹏, 等. 装备测试性建模与设计技术[M]. 北京: 科学出版社, 2012. |
QIU J, LIU G J, YANG P, et al. Equipment testability modeling and design technology[M]. Beijing: Science Press, 2012. | |
5 | 谢皓宇, 邱静, 杨鹏. 考虑单元互测的测试性指标分配方法[J]. 系统工程与电子技术, 2019, 41 (12): 2899- 2904. |
XIE H Y, QIU J, YANG P. Testability index allocation method considering unit mutual test[J]. Systems Engineering and Electronics, 2019, 41 (12): 2899- 2904. | |
6 |
HU Y X, SUN Y G, XUE J. Exponential-based testability index allocation and feasibility analysis method[J]. IEEE Access, 2021, 9, 66154- 66162.
doi: 10.1109/ACCESS.2021.3076665 |
7 |
李景熹, 刘刚, 狄鹏. 舰船装备测试性指标综合加权分配方法研究[J]. 舰船电子工程, 2012, 32 (6): 108- 109.
doi: 10.3969/j.issn.1627-9730.2012.06.039 |
LI J X, LIU G, DI P. Research on testability index allocation method of warship equipment[J]. Ship Electronic Engineering, 2012, 32 (6): 108- 109.
doi: 10.3969/j.issn.1627-9730.2012.06.039 |
|
8 |
GAROUSI V, FELDERER M, KILICASLAN F N. A survey on software testability[J]. Information and Software Technology, 2019, 108, 35- 64.
doi: 10.1016/j.infsof.2018.12.003 |
9 | GONG J, YANG M J. A testability allocation method suitable for engineering application[C]//Proc. of the 10th International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 2020. |
10 | 王红霞, 叶晓慧. 装备测试性设计分析验证技术[M]. 北京: 电子工业出版社, 2018. |
WANG H X, YE X H. The technology on testability design analysis and verification of equipment[M].Beijing: Publishing House of Electronics Industry, 2018. | |
11 |
张西山, 黄考利, 敖贤野, 等. 测试性验证试验中的故障样本综合加权分配方法[J]. 计算机测量与控制, 2015, 23 (1): 139- 142.
doi: 10.3969/j.issn.1671-4598.2015.01.043 |
ZHANG X S, HUANG K L, AO X Y, et al. Synthetic weighted method of failure samples allocation in testability[J]. Computer Measurement & Control, 2015, 23 (1): 139- 142.
doi: 10.3969/j.issn.1671-4598.2015.01.043 |
|
12 | LIU G, LU J W, HU B. A new testability allocation method based on improved AHP[C]// Proc. of the 29th Chinese Control and Decision Conference, 2017: 6390−6394. |
13 | YANG G, SUN J, XIAO H Y. Research on testability allocation method based on AHP-entropy weight combination[C]// Proc. of the IEEE International Conference on Information Technology, 2020: 49−53. |
14 | 汪庆雷, 黄宏伟, 高强. 基于层次分析法的导弹发射车测试性指标分配方法研究[J]. 质量与可靠性, 2022, (1): 54- 58. |
WANG Q L, HUANG H W, GAO Q. Research on the allocation method of testability index of missile launch vehicles based on AHP[J]. Quality and Reliability, 2022, (1): 54- 58. | |
15 | 王宁, 钟小军, 许正. 基于改进AHP的测试性分配方法研究[J]. 舰船电子工程, 2015, 35 (6): 115- 117. |
WANG N, ZHONG X J, XU Z. Testability allocation method based on improved AHP[J]. Ship Electronic Engineering, 2015, 35 (6): 115- 117. | |
16 |
胡艺馨, 孙毅刚, 赵珍. 混合PSO-SQP算法在航电系统测试性分配中的应用[J]. 电光与控制, 2021, (5): 60- 65.
doi: 10.3969/j.issn.1671-637X.2021.05.014 |
HU Y X, SUN Y G, ZHAO Z. Application of hybrid PSO-SQP algorithm in testability allocation of avionics system[J]. Electronics Optics & Control, 2021, (5): 60- 65.
doi: 10.3969/j.issn.1671-637X.2021.05.014 |
|
17 | 王贺, 朱智平, 王贵腾, 等. 基于费用函数的测试性指标优化分配方法[J]. 信息技术与网络安全, 2018,, (2): 51- 54. |
WANG H, ZHU Z P, WANG G T, et al. Optimal allocation method of testability index based on cost function[J]. Cyber Security and Data Governance, 2018,, (2): 51- 54. | |
18 |
ZHANG G F, SU Z P, LI M Q, et al. Constraint handling in NSGA-II for solving optimal testing resource allocation problems[J]. IEEE Trans. on Reliability, 2017, 66 (4): 1193- 1212.
doi: 10.1109/TR.2017.2738660 |
19 |
WANG G H, LI Q, CHEN X M, et al. Research on the efficiency improvement of design for testability using test point allocation[J]. Journal of Electronic Testing-theory and Applications, 2014, 30 (3): 371- 376.
doi: 10.1007/s10836-014-5450-z |
20 | 郭丹, 胡雪婷. 基于诊断方案的系统测试性分配方法[C]// 第16届中国航空测控技术年会, 2019. |
GUO D, HU X T. System-level testability distribution method for equipment based on diagnostic concept[C]// Proc. of the 16th China Aviation Measurement and Control Technology Annual Conference, 2019. | |
21 |
杨鹏, 胡业荣, 吴伟兴, 等. 基于反正切函数的测试性分配方法[J]. 国防科技大学学报, 2019, (6): 83- 87.
doi: 10.11887/j.cn.201906013 |
YANG P, HU Y R, WU W X, et al. Testability allocation method based on inverse tangent function[J]. Journal of National University of Defense Technology, 2019, (6): 83- 87.
doi: 10.11887/j.cn.201906013 |
|
22 | 杨鹏, 谢皓宇, 邱静. 一种基于二次分配的测试性指标分配方法[J]. 航空学报, 2019, (9): 293- 301. |
YANG P, XIE H Y, QIU J. A testability index allocation method based on quadratic allocation[J]. Acta Aeronautica et Astronautica Sinica, 2019, (9): 293- 301. | |
23 |
ABDULAZIZ S A, OSMAN T, BULENT G, et al. A fuzzy ANP-based criticality analyses approach of reliability-centered maintenance for CNC lathe machine components[J]. Journal of Radiation Research and Applied Sciences, 2024, 17 (1): 100738- 100747.
doi: 10.1016/j.jrras.2023.100738 |
24 |
SREENIVASAN A, SURESH M, NEDUNGADI P, et al. Mapping analytical hierarchy process research to sustainable development goals: bibliometric and social network analysis[J]. Heliyon, 2023, 9 (8): 19077- 19100.
doi: 10.1016/j.heliyon.2023.e19077 |
25 | SAATY T L. The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making[J]. International Series in Operations Research and Management Science, 2016, 233, 363- 419. |
26 | PANG N S, NAN M F, MENG Q C, et al. Selection of wind turbine based on fuzzy analytic network process: a case study in China[J]. Sustainability, 2021, 13 (4) |
27 |
WANG X, LIU Z J, CAI Y. A rating based fuzzy analytic network process (F-ANP) model for evaluation of ship maneuverability[J]. Ocean Engineering, 2015, 106, 39- 46.
doi: 10.1016/j.oceaneng.2015.06.061 |
28 | QING S X, ABDULLAH L. A case study of coastal community on application of fuzzy analytic network process for determining weights of quality of life[J]. Journal of Sustainability Science and Management, 2017, 2017(3): 119−129. |
29 | LI X J, ZHU Q. A novel algorithm for network selection in heterogeneous wireless networks based on interval triangular fuzzy numbers[J]. Journal of Computational Information Systems, 2015, 11 (15): 5373- 5383. |
30 | 朱兰, 杨淑红, 蒋红进, 等. 基于改进ANP的微网规划综合评价研究[J]. 太阳能学报, 2020, 41 (3): 140- 148. |
ZHU L, YANG S H, JIANG H J, et al. Study on comprehensive evaluation of microgrid planning based on improved ANP[J]. Acta Energiae Solaris Sinica, 2020, 41 (3): 140- 148. | |
31 |
施云聪, 程建, 钟慧. 基于ANP和群决策的指挥信息系统作战效能评估[J]. 火力与指挥控制, 2022, 47 (9): 112- 119.
doi: 10.3969/j.issn.1002-0640.2022.09.019 |
SHI Y C, CHENG J, ZHONG H. Operational effectiveness evaluation of command information system based on ANP and group decision making[J]. Fire Control & Command Control, 2022, 47 (9): 112- 119.
doi: 10.3969/j.issn.1002-0640.2022.09.019 |
|
32 | IIDA Y. A new way to make decisions with paired comparisons[J]. Smart Innovation, Systems and Technologies, 2012, 15 (1): 55- 66. |
33 |
MARTINO M, VIVIANA V. An analytic network process to support financial decision-making in the context of behavioural finance[J]. Mathematics, 2023, 11 (18): 3994- 4025.
doi: 10.3390/math11183994 |
34 | 陈威威. 基于三角模糊数层次分析法的水电项目社会稳定风险评估[J]. 数学的实践与认识, 2023, (4): 251- 260. |
CHEN W W. Social stability risk assessment of hydropower project based on triangular fuzzy number and analytic hierarchy process[J]. Mathematics in Practice and Theory, 2023, (4): 251- 260. | |
35 |
ZHANG R N, HUANG J, XU Y J, et al. Consensus models with aggregation operators for minimum quadratic cost in group decision making[J]. Applied Intelligence, 2023, 53 (2): 1370- 1390.
doi: 10.1007/s10489-021-02948-5 |
36 |
WAN S P, CHENG X J, DONG J Y. Group decision-making with interval multiplicative preference relations[J]. Knowledge and Information Systems, 2023, 65 (5): 2305- 2346.
doi: 10.1007/s10115-022-01816-z |
37 |
WU J, FRANCISCO C, ENRIQUE H V. Trust based consensus model for social network in an incomplete linguistic information context[J]. Applied Soft Computing, 2015, 35, 827- 839.
doi: 10.1016/j.asoc.2015.02.023 |
38 | 应文健, 程雨森, 王旋, 等. 基于研制阶段数据融合的舰炮制导弹药测试性评估方法[J]. 系统工程与电子技术, 2024, 46 (8): 2730- 2737. |
YING W J, CHENG Y S, WANG X, et al. Testability evaluation method of naval gun guided ammunition based on data fusion in development stage[J]. Systems Engineering and Electronics, 2024, 46 (8): 2730- 2737. |
[1] | Yu ZHANG, Lei WANG, Lin LU, Yongping YE, Liang WAN. PL-VIKOR group decision-making based on cumulative prospect theory and knowledge rating [J]. Systems Engineering and Electronics, 2023, 45(6): 1762-1771. |
[2] | Yaohua LI, Yuan GAO. Safety analysis for civil aircraft system based on STPA-ANP model [J]. Systems Engineering and Electronics, 2022, 44(9): 2986-2994. |
[3] | Wenqi WANG, Dengying JIANG. Linguistic intuitionistic fuzzy PROMETHEE multi-attribute group decision-making based on the probability degree [J]. Systems Engineering and Electronics, 2022, 44(8): 2581-2592. |
[4] | Jianing DENG, Yu WU, Shuting XU, Jinzhan GOU. Comprehensive evaluation of carrier aircraft's dispatch and recovery based on fuzzy Bayesian-ANP [J]. Systems Engineering and Electronics, 2022, 44(11): 3423-3432. |
[5] | Yue HU, Dengying JIANG, He LI. Probabilistic linguistic multi-attribute group decision-making based on bidirectional projection method [J]. Systems Engineering and Electronics, 2020, 42(9): 2052-2059. |
[6] | Leigang HU, Wuzhou LI, Jiaqiang ZHANG, Fu GAO. Rough group decision-making method of equipment repair level under uncertainty [J]. Systems Engineering and Electronics, 2020, 42(12): 2819-2824. |
[7] | YANG Lei, ZHU Yanqi. Research of mixed group decision-making process with#br# multiple judgment preferences [J]. Systems Engineering and Electronics, 2017, 39(1): 125-131. |
[8] | ZHANG Di, GUO Qi-sheng, LI Zhi-guo. Capability limited hierarchy evaluation of weapon equipment system based on ANP [J]. Systems Engineering and Electronics, 2015, 37(4): 817-824. |
[9] | CHEN Yun-xiang, CAI Zhong-yi, ZHANG Zheng-min, XIANG Hua-chun. Method for group decision-making information integration based on evidence theory and intuitionistic fuzzy set [J]. Systems Engineering and Electronics, 2015, 37(3): 594-598. |
[10] | HAO Jing-jing, ZHU Jian-jun, LIU Xiao-di. Novel decision-making method for aggregating dual linguistic information concerning interactive optimization [J]. Systems Engineering and Electronics, 2014, 36(5): 912-919. |
[11] | JIN Feng-xia,HUANG Tian-min. Method for regulating consistency of linguistic judgment matrix [J]. Journal of Systems Engineering and Electronics, 2013, 35(7): 1472-1476. |
[12] | WANG He-hua, YANG Ping, ZHU Jian-jun, FANG Zhi-geng. Evaluation model of incomplete information evaluation text based on linguistic variable [J]. Systems Engineering and Electronics, 2013, 35(12): 2545-2551. |
[13] | SONG Jie, DANG Yao-guo, LI Xue-mei, WANG Zheng-xin . Grey group decision-making model discriminable for invalid decision values [J]. Journal of Systems Engineering and Electronics, 2011, 33(6): 1317-1320. |
[14] | FANG Xiang-rong1,ZHOU Hong-an2. Novel method for group aggregating based on different forms of fuzzy preference information [J]. Journal of Systems Engineering and Electronics, 2010, 32(8): 1685-1688. |
[15] | HOU Fang, GUO Ya-jun, YU Zhen-ming. Group decision making method under given decision making environment [J]. Journal of Systems Engineering and Electronics, 2010, 32(8): 1680-1684. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||