Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (8): 2558-2569.doi: 10.12305/j.issn.1001-506X.2025.08.14
• Systems Engineering • Previous Articles
Zhe LIU(), Changzhu WEI, Cheng WEI, Jialun PU
Received:
2024-09-02
Online:
2025-08-25
Published:
2025-09-04
Contact:
Jialun PU
E-mail:liuzhe_nudt@163.com
CLC Number:
Zhe LIU, Changzhu WEI, Cheng WEI, Jialun PU. Aircraft integrated design methodology via system action clustering[J]. Systems Engineering and Electronics, 2025, 47(8): 2558-2569.
Table 2
The first level functional requirements behaviors and actions"
参数 | 含义 |
FR1 | 系统能够满足入轨并在轨运行的基本需求 |
FR2 | 系统能够探测 |
FR3 | 系统能够导航增强 |
FR4 | 系统能够通信中继 |
BE1 | 运行系统 |
BE2 | 跟踪探测目标 |
BE3 | 生成导航信息 |
BE4 | 中继信号 |
AC1-1 | 提供支撑 |
AC1-2 | 控制载荷温度 |
AC1-3 | 传输遥测遥控信息 |
AC1-4 | 提供上升段姿轨控 |
AC1-5 | 提供上升段配电 |
AC1-6 | 提供入轨段姿轨控 |
AC1-7 | 提供入轨段配电 |
AC1-8 | 提供上升段姿轨控指令 |
AC1-9 | 提供入轨段姿轨控指令 |
AC1-10 | 提供星务管理数采控制 |
AC1-11 | 提供在轨段姿控 |
AC1-12 | 测量上升段姿态 |
AC1-13 | 测量入轨段姿态 |
AC1-14 | 测量在轨段姿态 |
AC1-15 | 提供在轨段配电 |
AC2-1 | 提供变轨/调姿动力 |
AC2-2 | 提供探测设备配电 |
AC2-3 | 控制探测任务载荷 |
AC2-4 | 获取光学探测信息 |
AC2-5 | 处理存储下传图像数据 |
AC3-1 | 下传导航信号 |
AC3-2 | 提供导航设备配电 |
AC3-3 | 控制导航任务载荷 |
AC4-1 | 传输通信信息 |
AC4-2 | 提供通信中继设备配电 |
AC4-3 | 控制通信中继任务载荷 |
Table 3
The first level action label"
序号 | 第一层次动作标签 |
1 | 时间−上升段 |
2 | 时间−入轨段 |
3 | 时间−在轨段 |
4 | 约束−单位时间所能发送的信息量 |
5 | 约束−单位时间所能接收的信息量 |
6 | 约束−姿态测量精度 |
7 | 约束−所能输出的力矩 |
8 | 约束−所能输出的功率 |
9 | 约束−所能输出的推力 |
10 | 约束−所能输出的支撑力大小 |
11 | 约束−输出单次指令的耗时 |
12 | 约束−输出图像的质量 |
13 | 输入−信息 |
14 | 输入信息类型−导航信号 |
15 | 输入信息类型−通信信号 |
16 | 输入信息类型−遥测量 |
17 | 输出−信息 |
18 | 输出−物料 |
19 | 输出−能量 |
20 | 输出信息类型−姿态信息 |
21 | 输出信息类型−导航信号 |
22 | 输出信息类型−控制指令 |
23 | 输出信息类型−目标图像 |
24 | 输出信息类型−通信信号 |
25 | 输出物料类型−支撑 |
26 | 输出能量类型−力矩 |
27 | 输出能量类型−推力 |
28 | 输出能量类型−热能 |
29 | 输出能量类型−电能 |
Table 4
The first level action clustering results"
子动作集合 | 动作 |
电源系统 | 提供上升段配电 |
提供入轨段配电 | |
提供在轨运行段配电 | |
提供探测设备配电 | |
提供导航中继设备配电 | |
提供通信增强设备配电 | |
探测系统 | 获取探测信息 |
交互信息 | |
综合电子系统 | 提供上升段姿轨控指令 |
提供入轨段姿轨控指令 | |
提供在轨段星务管理、数据采集控制 | |
控制探测任务载荷 | |
控制导航中继任务载荷 | |
控制通信增强任务载荷 | |
测控系统 | 传输遥测遥控信息 |
传输导航信号 | |
放大电磁波信号 | |
动力推进系统 | 提供上升段姿轨控 |
提供入轨段姿轨控 | |
提供在轨段变轨/调姿动力 | |
结构系统 | 支撑载荷 |
热控系统 | 控制载荷温度 |
姿轨控系统 | 测量上升段姿态信息 |
测量入轨段姿态信息 | |
测量在轨段姿态信息 | |
控制在轨段姿态 |
1 | 金光, 徐伟, 曲宏松. 星载一体化高分辨率光学遥感卫星总体设计[M]. 北京: 国防工业出版社, 2018. |
JIN G, XU W, QU H S. Integrated high-resolution optical remote sensing satellite design [M]. Beijing: National Defense Industry Press, 2018. | |
2 | 谢晓光, 杨林. 对地观测敏捷小卫星星载一体化结构设计[J]. 红外与激光工程, 2014, 43 (S1): 53- 58. |
XIE X G, YANG L. Spaceborne integration design of smart small earth observation satellite structure[J]. Infrared and Laser Engineering, 2014, 43 (S1): 53- 58. | |
3 | LIU Z, XU X, HU Y Q, et al. Research on satellite platform and payload integrated design and vibration suppression[C]//Proc. of the 3rd International Conference on Testing Technology and Automation Engineering, 2024. |
4 |
WANG J, CHEN Z G, FAN C Z, et al. On-orbit validation of thermal control subsystem for microsatellite with integrated configuration of platform and payload[J]. Thermal Science and Engineering Progress, 2022, 34, 101442.
doi: 10.1016/j.tsep.2022.101442 |
5 | ZU J G, WANG T, WU Y H. Integrated design of platform and payload for remote sensing satellite[C]//Proc. of the 5th International Symposium of Space Optical Instruments and Applications, 2020: 81–89. |
6 |
景骢. “快舟一号甲”: 首次实现卫星与火箭之间数据传输[J]. 太空探索, 2019, (11): 5.
doi: 10.3969/j.issn.1009-6205.2019.05.002 |
JING C. "Kuaizhou-1a": The first data transmission between a satellite and a rocket[J]. Space Exploration, 2019, (11): 5.
doi: 10.3969/j.issn.1009-6205.2019.05.002 |
|
7 | MACHI V. Rocket lab to provide a speedy ride to orbit with new ‘photon’ spacecraft[J]. Defense Daily, 2019, 10, 11- 12. |
8 |
徐伟, 金光, 王家骐. 吉林一号轻型高分辨率遥感卫星光学成像技术[J]. 光学精密工程, 2017, 25 (8): 1969- 1978.
doi: 10.3788/OPE.20172508.1969 |
XU W, JIN G, WANG J Q. Optical imaging technology of Jilin−1 light high resolution remote sensing satellite[J]. Optics and Precision Engineering, 2017, 25 (8): 1969- 1978.
doi: 10.3788/OPE.20172508.1969 |
|
9 | 府大兴, 顾平, 赵苍碧, 等. 星载SAR结构功能一体化天线制造关键技术[J]. 中国电子科学研究院学报, 2020, 15 (11): 1070- 1074. |
FU D X, GU P, ZHAO C B, et al. The key technology of space−borne SAR structure−function integrated antenna manufacturing[J]. Journal of Chinese Academy of Electronic Science, 2020, 15 (11): 1070- 1074. | |
10 |
XU J M, ZHANG C Z, WAN Z M, et al. Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: a review[J]. Renewable and Sustainable Energy Reviews, 2022, 155, 111908.
doi: 10.1016/j.rser.2021.111908 |
11 |
BAZDAR E, SAMETI M, NASIRI F, et al. Compressed air energy storage in integrated energy systems: a review[J]. Renewable and Sustainable Energy Reviews, 2022, 167, 112701.
doi: 10.1016/j.rser.2022.112701 |
12 |
JUNIANI A I, SINGGIH M L, KARNINGSIH P D. Design for manufacturing, assembly, and reliability: an integrated framework for product redesign and innovation[J]. Designs, 2022, 6 (5): 88.
doi: 10.3390/designs6050088 |
13 |
OHALETE N, ADERRIBIGBE A, ANI E, et al. Challenges and innovations in electro−mechanical system integration: a review[J]. Acta Electronica Malaysia, 2024, 8 (1): 11- 20.
doi: 10.26480/aem.01.2024.11.20 |
14 |
REZAZADEH K, LEPECH M D, CRIDDLE C S. Integrated design and optimization of water−energy nexus: combining wastewater treatment and energy system[J]. Frontiers in Sustainable Cities, 2022, 4, 856996.
doi: 10.3389/frsc.2022.856996 |
15 | 卫杰, 何清明, 张义萍, 等. 星载圆锥螺旋天线的一体化设计[J]. 电子学报, 2020, 48 (6): 1113- 1116. |
WEI J, HE Q M, ZHANG Y P, et al. Integrated design of space-borne conical spiral antenna[J]. Chinese Journal of Electronics, 2020, 48 (6): 1113- 1116. | |
16 |
LIU Q H, CHEN J D, YANG K, et al. An integrating spherical fuzzy AHP and axiomatic design approach and its application in human–machine interface design evaluation[J]. Engineering Applications of Artificial Intelligence, 2023, 125, 106746.
doi: 10.1016/j.engappai.2023.106746 |
17 |
ADILAH M, RAU H, PROCOPIO K M. Using an axiomatic design approach to develop a product innovation process with circular and smart design aspects[J]. Sustainability, 2023, 15 (3): 1933.
doi: 10.3390/su15031933 |
18 |
STROM M, WOLFF K, JEAN J J, et al. A set-based-inspired design process supported by axiomatic design and interactive evolutionary algorithms[J]. International Journal of Product Development, 2023, 27 (3): 186- 212.
doi: 10.1504/IJPD.2023.133054 |
19 |
YANG Y P, ZUO Q Y, ZHANG K, et al. Research on multistage heterogeneous information fusion of product design decision-making based on axiomatic design[J]. Systems, 2024, 12 (6): 222.
doi: 10.3390/systems12060222 |
20 |
WANG H Q, LI H, TANG C T, et al. Unified design approach for systems engineering by integrating model-based systems design with axiomatic design[J]. Systems Engineering, 2020, 23 (1): 49- 64.
doi: 10.1002/sys.21505 |
21 |
王昊琪, 张旭, 唐承统. 复杂工程系统下基于模型的公理化设计方法[J]. 机械工程学报, 2018, 54 (7): 184- 198.
doi: 10.3901/JME.2018.07.184 |
WANG H Q, ZHANG X, TANG C T. Model-based axiomatic design approach for complex engineering systems[J]. Journal of Mechanical Engineering, 2018, 54 (7): 184- 198.
doi: 10.3901/JME.2018.07.184 |
|
22 |
肖人彬, 蔡池兰, 刘勇. 公理设计的研究现状与问题分析[J]. 机械工程学报, 2008, 44 (12): 1- 11.
doi: 10.3901/JME.2008.12.001 |
XIAO R B, CAI C L, LIU Y. Current research situation and problem analysis of axiomatic design[J]. Journal of Mechanical Engineering, 2008, 44 (12): 1- 11.
doi: 10.3901/JME.2008.12.001 |
|
23 | 周吉浩, 江屏, 韩宇轩. 基于公理设计的产品功能架构设计过程研究[J]. 机械设计与研究, 2023, 39 (1): 1- 9,15. |
ZHOU J H, JIANG P, HAN Y X. Research on product functional architecture design process based on axiomatic design[J]. Machine Design & Research, 2023, 39 (1): 1- 9,15. | |
24 | ISAKSSON O, WYNN D C, ECKERT C. Design perspectives, theories, and processes for engineering systems design[M]. Cham: Springer, 2023. |
25 | 王昊琪. 基于模型的系统设计理论和建模方法研究[D]. 北京: 北京理工大学, 2018. |
WANG H Q. Research on model-based systems design theory and modeling methodology[D]. Beijing: Beijing Institute of Technology, 2018. | |
26 | ZHU J, HUANG S, SHI Y Q, et al. A method of K-means clustering based on TF-IDF for software requirements documents written in Chinese language[J]. IEICE Transactions on Information, 2022, 105, 736- 754. |
27 | TAN P N, STEINBACK M, KUMAR V. Introduction to data mining[M]. Beijing: Posts & Telecom Press, 2011. |
28 | CHEN X T. Explore the role and emphasis of K-means, decision tree and distance based algorithms in data exception detection [C]//Proc. of the 2nd International Conference on Computing Innovation and Applied Physics, 2023: 60−67. |
29 | 林振荣, 黄虹霞, 舒伟红, 等. 基于TF-IDF与用户聚类的推荐算法[J]. 计算机仿真, 2022, 39 (6): 341- 345. |
LIN Z R, HUANG H X, SHU W H, et al. Recommendation algorithm based on TF-IDF and user clustering[J]. Computer Simulation, 2022, 39 (6): 341- 345. | |
30 | POURAHMAD S, BASIRAT A, RAHIMI A, et al. Comparison of three hybrid methods by genetic algorithm, minimum spanning tree, and hierarchical clustering in an applied study[J]. Computational and Mathematical Methods in Medicine., 2020, 2020 (1): 7636857- 11. |
31 | BURGARD J P , COSTA C M , HOJNY C, et al. Mixed integer programming techniques for the minimum sum-of-squares clustering problem[J]. Journal of Global Optimization, 2023, 87 (1): 133- 189. |
[1] | Kunxiao TIAN, Hua SU, Yongsong LONG, Yucheng YANG, Chunlin GONG. Module division method of missile based on requirement-function-structure relation matrix [J]. Systems Engineering and Electronics, 2024, 46(10): 3398-3406. |
[2] | Ziyi CHEN, Yajie DOU, Xiangqian XU, Yuejin TAN, Kewei YANG, Jiang JIANG. Combinatorial optimization solution of complex equipment driven by contribution and sharing two-tier strategy [J]. Systems Engineering and Electronics, 2023, 45(2): 431-443. |
[3] | SHAN Ganlin, ZHANG Zining. Non-myopic sensor scheduling in a single platform for target tracking [J]. Systems Engineering and Electronics, 2014, 36(3): 458-463. |
[4] | WANG Pei,LI Ju-fang,TAN Yue-jin. Comparison of earth observation scheduling model for satellite formation [J]. Journal of Systems Engineering and Electronics, 2010, 32(8): 1689-1694. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||