Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (6): 1941-1949.doi: 10.12305/j.issn.1001-506X.2025.06.22
• Systems Engineering • Previous Articles Next Articles
Xiaodi LIU1,*, Jianli HAN2, Jianjun ZHANG3, Yiqiao WU2, Tianzhao MA2
Received:
2024-05-22
Online:
2025-06-25
Published:
2025-07-09
Contact:
Xiaodi LIU
CLC Number:
Xiaodi LIU, Jianli HAN, Jianjun ZHANG, Yiqiao WU, Tianzhao MA. Two-stage accelerated life test model based on Weibull distribution[J]. Systems Engineering and Electronics, 2025, 47(6): 1941-1949.
Table 3
Parameter estimation results when n=60"
τ | 参数 | MLE | Asym-CIs | Boot-CIs | |||||
Bias | MSE | CP | AL | CP | AL | ||||
10 | r10 | 0.005 9 | 0.059 5 | 0.960 8 | 1.019 2 | 0.951 9 | 0.928 6 | ||
r11 | 0.012 7 | 0.051 3 | 0.984 0 | 0.926 0 | 0.987 6 | 0.900 0 | |||
σ1 | 0.004 4 | 0.012 1 | 0.954 8 | 0.443 5 | 0.976 5 | 0.426 0 | |||
r20 | 0.043 2 | 0.214 4 | 0.998 7 | 8.643 9 | 0.985 5 | 0.906 7 | |||
r21 | 0.050 6 | 0.049 4 | 0.999 2 | 3.369 4 | 0.987 2 | 0.720 1 | |||
r22 | 0.018 0 | 0.000 8 | 0.969 9 | 0.178 2 | 0.973 2 | 0.072 4 | |||
σ2 | 0.028 8 | 0.003 4 | 0.996 0 | 0.302 0 | 0.991 6 | 0.182 1 | |||
15 | r10 | 0.005 1 | 0.036 6 | 0.981 2 | 0.760 9 | 0.973 6 | 0.813 7 | ||
r11 | 0.001 5 | 0.026 8 | 0.981 2 | 0.598 0 | 0.984 2 | 0.631 2 | |||
σ1 | 0.003 7 | 0.006 9 | 0.969 0 | 0.280 9 | 0.972 1 | 0.330 8 | |||
r20 | 0.071 2 | 0.226 9 | 0.998 1 | 9.998 8 | 0.984 6 | 0.961 6 | |||
r21 | 0.088 3 | 0.063 0 | 0.993 2 | 5.845 0 | 0.986 5 | 0.755 1 | |||
r22 | 0.028 4 | 0.001 9 | 0.998 9 | 0.553 4 | 0.973 2 | 0.100 0 | |||
σ2 | 0.033 9 | 0.004 1 | 0.997 8 | 0.612 2 | 0.974 1 | 0.188 8 |
Table 4
Parameter estimation results when n=80"
τ | 参数 | MLE | Asym-CIs | Boot-CIs | |||||
Bias | MSE | CP | AL | CP | AL | ||||
10 | r10 | 0.005 2 | 0.037 5 | 0.971 0 | 0.791 6 | 0.962 6 | 0.823 9 | ||
r11 | 0.001 5 | 0.032 5 | 0.986 0 | 0.710 2 | 0.984 2 | 0.734 5 | |||
σ1 | 0.004 2 | 0.007 5 | 0.965 0 | 0.345 7 | 0.973 6 | 0.334 1 | |||
r20 | 0.041 8 | 0.206 9 | 0.999 2 | 6.645 4 | 0.986 1 | 0.850 0 | |||
r21 | 0.032 4 | 0.039 7 | 0.999 8 | 2.591 1 | 0.991 5 | 0.610 4 | |||
r22 | 0.013 0 | 0.000 5 | 0.986 0 | 0.140 6 | 0.981 2 | 0.058 2 | |||
σ2 | 0.021 6 | 0.002 3 | 0.980 0 | 0.234 4 | 0.973 2 | 0.171 3 | |||
15 | r10 | 0.004 9 | 0.016 2 | 0.976 6 | 0.492 6 | 0.964 7 | 0.488 5 | ||
r11 | 0.001 4 | 0.0163 | 0.9838 | 0.4975 | 0.9832 | 0.480 2 | |||
σ1 | 0.002 1 | 0.003 9 | 0.964 9 | 0.235 8 | 0.975 4 | 0.243 5 | |||
r20 | 0.054 2 | 0.217 7 | 0.998 9 | 8.086 9 | 0.987 2 | 0.915 0 | |||
r21 | 0.075 0 | 0.056 1 | 0.995 4 | 4.238 3 | 0.981 6 | 0.746 4 | |||
r22 | 0.026 8 | 0.001 7 | 0.999 0 | 0.410 4 | 0.971 9 | 0.096 4 | |||
σ2 | 0.031 2 | 0.003 2 | 0.996 9 | 0.449 2 | 0.975 4 | 0.178 9 |
Table 6
Parameter estimation results under two-stage ALT"
模型 | 参数 | MLE | 95%置信区间 | |
下限 | 上限 | |||
两阶段ALT模型 | r10 | 0.645 8 | 0.576 2 | 0.715 4 |
r11 | -2.254 5 | -2.323 7 | -2.185 3 | |
σ1 | 0.255 8 | 0.2269 | 0.284 7 | |
r20 | -24.919 6 | -44.850 0 | -4.983 8 | |
r21 | 11.869 9 | 2.266 6 | 21.471 1 | |
r22 | -0.021 0 | -0.697 3 | 0.655 3 | |
σ2 | 0.453 9 | 0.030 6 | 0.869 4 | |
单阶段ALT模型 | r10 | 0.645 8 | 0.576 2 | 0.715 4 |
r11 | -2.254 5 | -2.323 7 | -2.185 3 | |
σ1 | 0.255 8 | 0.226 9 | 0.284 7 | |
r20 | -24.742 2 | -44.327 9 | -5.156 6 | |
r21 | 11.796 7 | 2.340 2 | 21.253 1 | |
r22 | -0.020 0 | -0.694 7 | 0.654 7 | |
σ2 | 0.450 0 | 0.031 1 | 0.868 9 |
1 |
CHENW H,GAOL,PANJ,et al.Design of accelerated life test plans: overview and prospect[J].Chinese Journal of Mechanical Engineering,2018,31(1):13.
doi: 10.1186/s10033-018-0206-9 |
2 | 张弦,姜歌东,梅雪松,等.采用瞬态有限元及加速寿命试验的谐波减速器时变可靠度评估方法[J].西安交通大学学报,2020,54(4):1-9. |
ZHANGX,JIANGG D,MEIX S,et al.Time-dependent reliability evaluation method of harmonic drive with transient finite element and accelerated life test[J].Journal of Xi'an Jiaotong University,2020,54(4):1-9. | |
3 |
NASSARM,DEYS,NADARAJAHS.Reliability analysis of exponentiated Poisson-exponential constant stress accelerated life test model[J].Quality and Reliability Engineering International,2021,37(6):2853-2874.
doi: 10.1002/qre.2893 |
4 |
ESCOBARL A,MEEKERW Q.Planning accelerated life tests with two or more experimental factors[J].Technometrics,1995,37(4):411-427.
doi: 10.1080/00401706.1995.10484374 |
5 |
ZHUY,ELSAYEDE A.Design of accelerated life testing plans under multiple stresses[J].Naval Research Logistics,2013,60(6):468-478.
doi: 10.1002/nav.21545 |
6 |
SMITN,RAUBENHEIMERL.Bayesian accelerated life tes ting: a generalized Eyring-Birnbaum-Saunders model[J].Quality and Reliability Engineering International,2022,38(1):195-210.
doi: 10.1002/qre.2970 |
7 | 赵泓荀,杨兆军,陈传海,等.考虑参数权重的数控机床电主轴加速试验优化设计[J].吉林大学学报(工学版),2022,52(2):409-416. |
ZHAOH X,YANGZ J,CHENC H,et al.Optimal design of acceleration test of motorized spindle of numerical control machine tool considering parameter weight[J].Journal of Jilin University (Engineering and Technology Edition),2022,52(2):409-416. | |
8 |
ZHANGX X,YANGJ,KONGX F.Planning constant-stress accelerated life tests with multiple stresses based on D-optimal design[J].Quality and Reliability Engineering International,2021,37(1):60-77.
doi: 10.1002/qre.2720 |
9 |
LIUY,WANGY S,FANZ,et al.A new universal multi-stress acceleration model and multi-parameter estimation method based on particle swarm optimization[J].Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,2020,234(6):764-778.
doi: 10.1177/1748006X20918793 |
10 |
YEX R,HUY F,ZHENGB K,et al.A new class of multi-stress acceleration models with interaction effects and its extension to accelerated degradation modelling[J].Reliability Engineering and System Safety,2022,228,108815.
doi: 10.1016/j.ress.2022.108815 |
11 |
张帆,田活操,王鹏,等.考虑广义耦合的多应力加速寿命评估方法[J].系统工程与电子技术,2023,45(10):3350-3361.
doi: 10.12305/j.issn.1001-506X.2023.10.40 |
ZHANGF,TIANH C,WANGP,et al.Multi-stress accelerated life evaluation method considering generalized coupling[J].Systems Engineering and Electronics,2023,45(10):3350-3361.
doi: 10.12305/j.issn.1001-506X.2023.10.40 |
|
12 |
OKAFORE G,VINSONW,HUITINKD R.Effect of stress interaction on multi-stress accelerated life test plan: assessment based on particle swarm optimization[J].Sustainability,2023,15(4):3451.
doi: 10.3390/su15043451 |
13 |
BAID S,KIMM S,LEES H.Optimum simple step-stress accelerated life tests with censoring[J].IEEE Trans. on Reliability,1989,38(5):528-532.
doi: 10.1109/24.46476 |
14 |
ZHAOW,ELSAYEDE A.A general accelerated life model for step-stress testing[J].IIE Transactions,2005,37(11):1059-1069.
doi: 10.1080/07408170500232396 |
15 | HAND.Time and cost constrained design of a simple step-stress accelerated life test under progressive Type-Ⅰ censoring[J].Quality Engineering,2020,33(1):156-171. |
16 |
张春华,陈循,温熙森.步降应力加速寿命试验(上篇)—方法篇[J].兵工学报,2005,26(5):661-665.
doi: 10.3321/j.issn:1000-1093.2005.05.019 |
ZHANGC H,CHENX,WENX S.Step-down-stress accele rated life testing—methodology[J].Acta Armamentarii,2005,26(5):661-665.
doi: 10.3321/j.issn:1000-1093.2005.05.019 |
|
17 | LIANGQ W,WANGD D.Influence study of Weibull distribution parameter on double stress down-step accelerated life test[J].Indian Journal of Geo-Marine Sciences,2018,47(1):46-52. |
18 | NELSONW B.Accelerated life testing-step-stress models and data analysis[J].IEEE Trans.on Reliability,1980,29(2):103-108. |
19 |
REFAHA,EHABM A,INDRANILG,et al.Statistical inference of a step-stress model with competing risks under time censoring for Alpha power exponential distribution[J].Journal of Radiation Research and Applied Sciences,2024,17(1):100771.
doi: 10.1016/j.jrras.2023.100771 |
20 |
DGROOTM H,GOELP K.Bayesian estimation and optimal design in partially accelerated life-test[J].Naval Research Logistics Quarterly,1979,26(2):223-235.
doi: 10.1002/nav.3800260204 |
21 |
BHATTACHARRYAG K,SOEJOETIZ.A tampered failure rate model for step-stress accelerated life test[J].Communications in Statistics, Theory and Methods,1989,18(5):1627-1643.
doi: 10.1080/03610928908829990 |
22 |
KHAMISI H,HIGGINSH H.A new model for step-stress testing[J].IEEE Trans.on Reliability,1998,47(2):131-134.
doi: 10.1109/24.722275 |
23 | XUH Y,TANGY C.Commentary: the Khamis/Higgins model[J].IEEE Trans.on Reliability,2003,52(1):4-6. |
24 | KATERIM,KAMPSU.Inference in step-stress models based on failure rates[J].Statistical Papers,2015,56(8):639-660. |
25 | PALA,MITRAS,KUNDUD.Order restricted classical inference of a Weibull multiple step-stress model[J].Journal of Applied Statistics,2021,48(4):623-645. |
26 | NELSON W B. 加速试验—统计模型、试验设计与数据分析[M]. 张正平, 李海波, 译. 北京: 中国宇航出版社, 2019. |
NELSON W B. Accelerated testing: statistical models, test plans and data analysis[M]. ZHANG Z P, LI H B, trans. Beijing: China Aerospace Press, 2019. | |
27 | PALA,SAMANTAD,MITRAS,et al.A simple step-stress model for Lehmann family of distributions[M].Cham:springer,2021. |
28 | YANGG B.Optimum constant-stress accelerated life-test plans[J].IEEE Trans.on Reliability,1994,43(4):575-581. |
29 | 马小兵,杨军.可靠性统计分析[M].北京:北京航空航天大学出版社,2020. |
MAX B,YANGJ.Statistical analysis of reliability[M].Beijing:Beihang University Press,2020. | |
30 | 夏宏运. 电连接器组合应力加速寿命试验与统计分析的研究[D]. 杭州: 浙江理工大学, 2019. |
XIA H Y. Research on combined stresses accelerated life test and statistical analysis of electrical connector[D]. Hangzhou: Zhejiang Sci-Tech University, 2019. |
[1] | Leilei ZHANG, Xi LIU, Xulin LIU, Hongjun YANG, Feng ZHANG. Accelerated storage life assessment method under zero-failure data for electromechanical products of missile [J]. Systems Engineering and Electronics, 2023, 45(7): 2287-2294. |
[2] | Yunwen FENG, Weihuang PAN, Cheng LU, Jiaqi LIU. Optimization of dynamic maintenance task interval for domestic civil aircraft based on operation data [J]. Systems Engineering and Electronics, 2023, 45(4): 1231-1238. |
[3] | Anqi ZHANG, Shengpeng ZHANG, Hongmin LI, Yao ZHU, Sikun MI. Efficient environmental stress screening method based on key quality characteristic [J]. Systems Engineering and Electronics, 2023, 45(11): 3706-3713. |
[4] | Hongbin LIU, Qian ZHAO, Xiang JIA, Bo GUO. Residual life prediction of r-out-of-n: G systems with known failure information [J]. Systems Engineering and Electronics, 2022, 44(5): 1738-1746. |
[5] | Yao TAN, Qian ZHAO, Wenfeng WANG, Bo GUO, Ping JIANG. Type I censored reliability acceptence test plan for Weibull distributed products by considering expert information [J]. Systems Engineering and Electronics, 2022, 44(4): 1409-1416. |
[6] | Yi LIU, Xiaoxiong ZHOU, Guangjun CHENG. High dynamic carrier tracking technology in frequency hopping systems [J]. Systems Engineering and Electronics, 2022, 44(2): 677-683. |
[7] | Huaiqiang ZHANG, Tiecheng LI, Jungang DU. Optimization of failure rate and warranty model of shipborne missile system [J]. Systems Engineering and Electronics, 2022, 44(1): 347-356. |
[8] | Hongqin LIANG, Xuefeng FENG, Jiayin TANG, Qifeng LIU. Confidence reliability evaluation model of dual constant-stress accelerated life test for Weibull distribution product [J]. Systems Engineering and Electronics, 2020, 42(9): 2140-2148. |
[9] | Yan WANG, Yimin SHI. Statistical analysis of the dependent competing risks model under the double constant-stress accelerated life test [J]. Systems Engineering and Electronics, 2020, 42(11): 2644-2653. |
[10] | ZHAO Qian, JIA Xiang, CHENG Zhijun, GUO Bo. Estimation of lifetime and residual life of typical system with Weibull distributed components [J]. Systems Engineering and Electronics, 2019, 41(7): 1665-1671. |
[11] | WANG Xinpeng, ZHANG Jingyuan, ZHANG Honggang. Reliability analysis for equipment in storage with zero-failure data [J]. Systems Engineering and Electronics, 2019, 41(5): 1169-1172. |
[12] | CAI Fuqing, WANG Ge, WANG Yue. Study on service reliability for aircraft based on daily maintenance and flight data [J]. Systems Engineering and Electronics, 2018, 40(10): 2388-2392. |
[13] | ZHAI Yali, ZHANG Zhihua, SHAO Songshi. Failure rule analysis of degradation products and its application [J]. Systems Engineering and Electronics, 2017, 39(6): 1420-1424. |
[14] | LIU Yanchao, SHI Yimin, SHI Xiaolin. Reliability analysis of four-unit hybrid systems with masked data [J]. Systems Engineering and Electronics, 2017, 39(5): 1183-1188. |
[15] | JIN Yan, GAO Duo, JI Hongbing. Parameter estimation of LFM signal based on robust S transform in α stable distribution noise [J]. Systems Engineering and Electronics, 2017, 39(4): 693-699. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||