Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (2): 390-397.doi: 10.12305/j.issn.1001-506X.2025.02.06
• Electronic Technology • Previous Articles
Jie JIANG, Qing LING, Wenjun YAN, Kai LIU
Received:
2023-12-21
Online:
2025-02-25
Published:
2025-03-18
Contact:
Qing LING
CLC Number:
Jie JIANG, Qing LING, Wenjun YAN, Kai LIU. Multi-source ship image fusion detection method based on MFFDet-R[J]. Systems Engineering and Electronics, 2025, 47(2): 390-397.
1 | 王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37 (9): 1029- 1039. |
WANG Y Q , MA L , TIAN Y . Overview of ship target detection and recognition in optical remote sensing images[J]. Journal of Automation, 2011, 37 (9): 1029- 1039. | |
2 | 赵其昌, 吴一全, 苑玉彬. 光学遥感图像舰船目标检测与识别方法研究进展[J]. 航空学报, 2023, 34 (1): 242- 251. |
ZHAO Q C , WU Y Q , YUAN Y B . Research progress on ship target detection and recognition methods in optical remote sensing images[J]. Journal of Aeronautics, 2023, 34 (1): 242- 251. | |
3 |
何友, 熊伟, 刘俊, 等. 海上信息感知与融合研究进展及展望[J]. 火力与指挥控制, 2018, 43 (6): 1- 10.
doi: 10.3969/j.issn.1002-0640.2018.06.001 |
HE Y , XIONG W , LIU J , et al. Research progress and prospects on maritime information perception and fusion[J]. Firepower and Command and Control, 2018, 43 (6): 1- 10.
doi: 10.3969/j.issn.1002-0640.2018.06.001 |
|
4 | 甘春生. 星载遥感图像舰船检测方法研究[D]. 辽宁: 沈阳航空航天大学, 2016. |
GAN C S. Research on ship detection methods in spaceborne remote sensing images[D]. Liaoning: Shenyang University of Aeronautics and Astronautics, 2016. | |
5 | LEI S , ZOU Z X , LIU D G , et al. Sea-land segmentation for infrared remote sensing images based on superpixels and multi-scale features[J]. Infrared Physics & Technology, 2018, 91, 12- 17. |
6 |
ZHI B X , ZHOU F . Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognition, 2010, 43 (6): 2145- 2156.
doi: 10.1016/j.patcog.2009.12.023 |
7 | LIU R , LU Y , GONG C , et al. Infrared point target detection with improved template matching[J]. Infrared Physics & Technology, 2012, 55 (4): 380- 387. |
8 | 李海军, 孔繁程, 林云. 基于改进YOLOv5s的红外舰船检测算法[J]. 系统工程与电子技术, 2023, 45 (8): 2415- 2422. |
LI H J , KONG F C , LIN Y . Infrared ship detection algorithm based on improved YOLOv5s[J]. Systems Engineering and Electronics, 2023, 45 (8): 2415- 2422. | |
9 | 潘为年. 基于深度学习的红外成像舰船目标检测方法研究[D]. 成都: 电子科技大学, 2021. |
PAN W N. Research on infrared imaging ship target detection method based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
10 |
ZHANG J X . Multi-source remote sensing data fusion: status and trends[J]. International Journal of Image and Data Fusion, 2010, 1 (1): 5- 24.
doi: 10.1080/19479830903561035 |
11 | LI M J, DONG Y B, WANG X L. Pixel level image fusion based the wavelet transform[C]//Proc. of the 6th International Congress on Image and Signal Processing, 2013, 2: 995-999. |
12 |
HAN X , LYU Y , SONG T X . An adaptive two-scale image fusion of visible and infrared images[J]. IEEE Access, 2019, 7, 56341- 56352.
doi: 10.1109/ACCESS.2019.2913289 |
13 | YOU T T, TANG Y. Visual saliency detection based on adaptive fusion of color and texture features[C]//Proc. of the 3rd IEEE International Conference on Computer and Communications, 2017: 2034-2039. |
14 | 杨曦, 张鑫, 郭浩远, 等. 基于不变特征的多源遥感图像舰船目标检测算法[J]. 电子学报, 2022, 50 (4): 887. |
YANG X , ZHANG X , GUO H Y , et al. Ship target detection algorithm based on invariant features in multi-source remote sensing images[J]. Journal of Electronics, 2022, 50 (4): 887. | |
15 | WANG A, JIANG J N, ZHANG H Y. Multi-sensor image decision level fusion detection algorithm based on D-S evidence theory[C]//Proc. of the 4th International Conference on Instrumentation and Measurement, Computer, Communication and Control, 2014, 620-623. |
16 |
PAUL P P , GAVRILOVA M L , ALHAJJ R . Decision fusion for multimodal biometrics using social network analysis[J]. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2014, 44 (11): 1522- 1533.
doi: 10.1109/TSMC.2014.2331920 |
17 | 关欣, 国佳恩, 衣晓. 基于低秩双线性池化注意力网络的舰船目标识别[J]. 系统工程与电子技术, 2023, 45 (5): 1305- 1314. |
GUAN X , GUO J E , YI X . Ship target recognition based on low rank bilinear pooling attention network[J]. Systems Engineering and Electronics, 2023, 45 (5): 1305- 1314. | |
18 | DELIANG X , YIHAO X U , JIANDA C , et al. An algorithm based on a feature interaction-based keypoint detector and sim-CSPNet for SAR image registration[J]. Journal of Radars, 2022, 11 (6): 1081- 1097. |
19 |
ZHANG Y C , ZHANG W B , YU J Y , et al. Complete and accurate holly fruits counting using YOLOX object detection[J]. Computers and Electronics in Agriculture, 2022, 198, 107062.
doi: 10.1016/j.compag.2022.107062 |
20 | DEVER W G . The chronology of Syria-Palestine in the second millennium BCE: a review of current issues[J]. Bulletin of the American Schools of Oriental Research, 1992, 288 (1): 1- 25. |
21 | SONG G L, LIU Y, WANG X G. Revisiting the sibling head in object detector[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11563-11572. |
22 | FU A M , ZHANG X L , XIONG N X , et al. VFL: a verifiable federated learning with privacy-preserving for big data in industrial IOT[J]. IEEE Trans. on Industrial Informatics, 2020, 18 (5): 3316- 3326. |
23 | FENG C J, ZHONG Y J, GAO Y, et al. Tood: task-aligned one-stage object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 3490-3499. |
24 | LI X , WANG W H , WU L J , et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33, 21002- 21012. |
25 | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE conference on computer vision and pattern recognition, 2017: 2117-2125. |
26 | LIU Z, LI Y, YAO L, et al. Task aligned generative meta-learning for zero-shot learning[C]//Proc. of the AAAI Confe-rence on Artificial Intelligence, 2021, 35(10): 8723-8731. |
27 | LLERENA J E. Probabilistic intersection-over-union for training and evaluation of oriented object detectors[J]. 2022, 15(6): 156-178. |
28 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
29 | ZHANG H Y, WANG Y, DAYOUB F, et al. Varifocalnet: an IoU-aware dense object detector[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8514-8523. |
30 | LI X , WANG W H , WU L J , et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33, 21002- 21012. |
[1] | Jie JIANG, Limin ZHANG, Kai LIU, Wenjun YAN, Meng WANG. Infrared ship target detection method based on task alignment learning [J]. Systems Engineering and Electronics, 2025, 47(1): 34-40. |
[2] | Zishuo HAN, Xiquan FAN, Qiang FU, Chuanyan MA, Dongdong ZHANG. Target detection based on multi-source information fusion from the perspective of drones [J]. Systems Engineering and Electronics, 2025, 47(1): 52-61. |
[3] | Lei YU, Qiuyue DENG, Liying ZHENG, Haoyu WU. Second-order progressive feature fusion network for image super-resolution reconstruction [J]. Systems Engineering and Electronics, 2024, 46(2): 391-400. |
[4] | Fengtao XUE, Tianyu SUN, Yimin YANG, Jian YANG. Rotated ship target detection algorithm in SAR images based on global feature fusion [J]. Systems Engineering and Electronics, 2024, 46(12): 4044-4053. |
[5] | Jiayi LUO, Xuanpeng LI, Jianghao LI, Qifan XUE, Feng YANG, Weigong ZHANG. Radiation signal sorting method based on PDW multi-feature fusion [J]. Systems Engineering and Electronics, 2024, 46(1): 80-87. |
[6] | Haijun LI, Fancheng KONG, Yun LIN. Infrared ship detection algorithm based on improved YOLOv5s [J]. Systems Engineering and Electronics, 2023, 45(8): 2415-2422. |
[7] | Xiaofeng ZHAO, Fei WU, Yebin XU, Jiahui NIU, Wei CAI, Zhili ZHANG. Evaluation method of infrared camouflage effect based on background restoration [J]. Systems Engineering and Electronics, 2022, 44(8): 2554-2561. |
[8] | Yonggang LI, Weigang ZHU, Qiongnan HUANG, Yuntao LI, Yonghua HE. Near-shore ship target detection with SAR images in complex background [J]. Systems Engineering and Electronics, 2022, 44(10): 3096-3103. |
[9] | Bangyan CUI, Runlan TIAN, Dongfeng WANG, Gang CUI, Jingyuan SHI. Radar emitter identification based on attention mechanism and improved CLDNN [J]. Systems Engineering and Electronics, 2021, 43(5): 1224-1231. |
[10] | Chenxuan LI, Kun QIAN, Huiqi XU. Key-points detection algorithm based on fusion of deep and shallow features for warship's vital part [J]. Systems Engineering and Electronics, 2021, 43(11): 3239-3249. |
[11] | Yalan LI, Weidong JIN, Peng GE. Radiation emitter signal recognition based on VMD and feature fusion [J]. Systems Engineering and Electronics, 2020, 42(7): 1499-1503. |
[12] | ZHANG Hongying, HU Wenbo. Scale-adaptive correlation filter tracking based on multiple features [J]. Systems Engineering and Electronics, 2019, 41(5): 951-957. |
[13] | XIONG Xinglong, CHEN Nan, LI Yongdong, MA Yuzhao, LI Meng, FENG Shuai. Type recognition of low level wind shear based on convolutional neural network [J]. Systems Engineering and Electronics, 2019, 41(4): 772-779. |
[14] | YUE Wen-chuan, WANG Wei-wei, LI Xiao-ping. Multifeature fusion image segmentation based on weighted-sparse subspace clustering [J]. Systems Engineering and Electronics, 2016, 38(9): 2184-2191. |
[15] | HAO Shuai, CHENG Yong-mei, MA Xu, ZHAO Jian-tao, LIU Hu-cheng. Multi-feature fusion robust particle filter tracking based on fuzzy measure [J]. Systems Engineering and Electronics, 2015, 37(11): 2447-2453. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||