Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (2): 369-375.doi: 10.12305/j.issn.1001-506X.2025.02.04
• Electronic Technology • Previous Articles
Yijia SONG1, Haiyan WANG2, Wei FENG1,*, Yinghui QUAN1
Received:
2024-01-04
Online:
2025-02-25
Published:
2025-03-18
Contact:
Wei FENG
CLC Number:
Yijia SONG, Haiyan WANG, Wei FENG, Yinghui QUAN. An aligned subspace adaptive ensemble algorithm based on hyperspectral cross-scene transfer learning[J]. Systems Engineering and Electronics, 2025, 47(2): 369-375.
Table 2
Number of samples of various types in the HyRANK dataset"
序号 | 名称 | 样本数量 | |
休斯顿2013 | 休斯顿2018 | ||
1 | 密集城市肌理 | 1 262 | 288 |
2 | 矿产开发地点 | 204 | 67 |
3 | 非灌溉工地 | 614 | 542 |
4 | 果树 | 150 | 79 |
5 | 橄榄树 | 1 768 | 1 401 |
6 | 针叶林 | 361 | 500 |
7 | 茂密叶绿植被 | 5 035 | 3 793 |
8 | 稀疏叶绿植被 | 6 374 | 2 803 |
9 | 植被稀疏地区 | 1 754 | 404 |
10 | 岩石和沙地 | 492 | 487 |
11 | 水域 | 1 612 | 1 393 |
12 | 沿海水域 | 398 | 451 |
13 | 总数 | 20 024 | 12 208 |
Table 3
Classification accuracy of different algorithms for the Houston dataset %"
序号 | 分类算法 | |||||
SVM | KNN | TCA | CORAL | DCA | ASAEL | |
1 | 0 | 0.16 | 86.02 | 74.92 | 95.43 | 100.00 |
2 | 9.67 | 10.12 | 87.83 | 1.53 | 76.68 | 96.78 |
3 | 83.10 | 76.55 | 43.11 | 93.76 | 38.67 | 38.19 |
4 | 62.50 | 79.17 | 100.00 | 0 | 0 | 0 |
5 | 2.98 | 20.69 | 66.36 | 41.31 | 40.14 | 74.92 |
6 | 44.00 | 24.34 | 15.46 | 28.88 | 61.11 | 73.59 |
7 | 0.04 | 1.78 | 34.29 | 8.54 | 78.99 | 92.35 |
Table 4
Classification accuracy of different algorithms for the HyRANK dataset %"
序号 | 分类算法 | |||||
SVM | KNN | TCA | CORAL | DCA | ASAEL | |
1 | 0 | 17.01 | 27.78 | 4.17 | 5.21 | 3.13 |
2 | 0 | 89.55 | 86.57 | 83.58 | 0 | 0 |
3 | 0 | 42.44 | 64.02 | 6.09 | 38.93 | 45.94 |
4 | 0 | 27.85 | 45.57 | 3.80 | 0 | 0 |
5 | 0 | 1.00 | 61.17 | 1.07 | 0 | 0 |
6 | 0 | 45.60 | 22.00 | 14.2 | 23.80 | 2.40 |
7 | 0 | 78.33 | 61.67 | 83.55 | 66.57 | 75.90 |
8 | 100 | 29.65 | 47.48 | 63.22 | 69.71 | 63.18 |
9 | 0 | 43.07 | 8.17 | 8.91 | 97.03 | 99.50 |
10 | 0 | 23.20 | 5.75 | 3.70 | 18.07 | 17.25 |
11 | 0 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
12 | 0 | 100.00 | 97.34 | 100.00 | 100.00 | 100.00 |
1 |
何同弟, 李见为. 基于自适应稀疏表示的高光谱遥感图像分类[J]. 系统工程与电子技术, 2013, 35 (9): 1994- 1998.
doi: 10.3969/j.issn.1001-506X.2013.09.32 |
HE T D , LI J W . Hyperspectral remote sensing image classification based on adaptive sparse representation[J]. Systems Engineering and Electronics, 2013, 35 (9): 1994- 1998.
doi: 10.3969/j.issn.1001-506X.2013.09.32 |
|
2 | 冯伟, 龙以君, 全英汇, 等. 基于SMOTE和深度迁移卷积神经网络的多类不平衡遥感图像分类算法研究[J]. 系统工程与电子技术, 2023, 45 (12): 3715- 3725. |
FENG W , LONG Y J , QUAN Y H , et al. Multi-class imba-lance remote sensing image classification based on SMOTE and deep transfer convolutional neural network[J]. Systems Engineering and Electronics, 2023, 45 (12): 3715- 3725. | |
3 | MENG Z H, YE M C, YAO F T, et al. Cross-scene hyperspectral image classification based on cycle-consistent adversarial networks[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2022: 1912-1915. |
4 | 于纯妍, 徐铭阳, 宋梅萍, 等. 对抗与蒸馏耦合的高光谱遥感域自适应分类方法[J]. 遥感学报, 2024, 28 (1): 231- 246. |
YU C Y , XU M Y , SONG M P , et al. Unsupervised domain adaptive classification for hyperspectral remote sensing by adversary coupled with distillation[J]. National Remote Sensing Bulletin, 2024, 28 (1): 231- 246. | |
5 | CHEN J B, YE M C, LU H J, et al. Cross-scene relationship mining with learning graph net for hyperspectral image classification[C]//Proc. of the 2nd International Conference on Artificial Intelligence and Computer Engineering, 2021: 519-524. |
6 |
ZHANG Y X , LI W , TAO R , et al. Cross-scene hyperspectral image classification with discriminative cooperative alignment[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 59 (11): 9646- 9660.
doi: 10.1109/TGRS.2020.3046756 |
7 | SUN B, SAENKO K. Deep CORAL: correlation alignment for deep domain adaptation[EB/OL]. [2023-11-22]. https://arXiv, 2016: 1607.01719. |
8 |
FENG W , QUAN Y H , DAUPHIN G , et al. Semi-supervised rotation forest based on ensemble margin theory for the classification of hyperspectral image with limited training data[J]. Information Sciences, 2021, 575, 611- 638.
doi: 10.1016/j.ins.2021.06.059 |
9 | PAN S J , YANG Q . A survey on transfer learning[J]. IEEE Trans. on Knowledge and Data Engineering, 2009, 22 (10): 1345- 1359. |
10 | PAN S J , TSANG I W , KWOK J T , et al. Domain adaptation via transfer component analysis[J]. IEEE Trans. on Knowledge and Data Engineering, 2011, 22 (2): 199- 210. |
11 | LONG M S, WANG J, DING G G, et al. Transfer feature learning with joint distribution adaptation[C]//Proc. of the IEEE International Conference on Computer Vision, 2013: 2200-2207. |
12 | TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance[EB/OL]. [2023-12-01]. https://arXiv, 2014: 1412.3474. |
13 | LONG M S, CAO Y, WANG J M, et al. Learning transferable features with deep adaptation networks[EB/OL]. [2023-12-01]. https://arXiv, 2015: 1502.02791. |
14 | WANG J D, CHEN Y Q, HU L S, et al. Stratified transfer learning for cross-domain activity recognition[C]//Proc. of the IEEE International Conference on Pervasive Computing and Communications, 2018. |
15 | SCHÖLKOPF B, PLATT J, HOFMANN T. A kernel method for the two-sample-problem[C]//Proc. of the Advances in Neural Information Processing Systems, 2007: 513-520. |
16 |
ZHANG Y X , LI W , ZHANG M M , et al. Topological structure and semantic information transfer network for cross-scene hyperspectral image classification[J]. IEEE Trans. on Neural Networks and Learning Systems, 2023, 34 (6): 2817- 2830.
doi: 10.1109/TNNLS.2021.3109872 |
17 | ZHAO C H , QIN B A , FENG S , et al. An unsupervised domain adaptation method towards multi-level features and decision boundaries for cross-scene hyperspectral image classification[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 5546216. |
18 | YU C Y , LIU C Y , SONG M P , et al. Unsupervised domain adaptation with content-wise alignment for hyperspectral ima-gery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 5511705. |
19 |
吕勤哲, 全英汇, 沙明辉, 等. 基于集成深度学习的有源干扰智能分类[J]. 系统工程与电子技术, 2022, 44 (12): 3595- 3602.
doi: 10.12305/j.issn.1001-506X.2022.12.02 |
LYU Q Z , QUAN Y H , SHA M H , et al. Ensemble deep learning-based intelligent classification of active jamming[J]. Systems Engineering and Electronics, 2022, 44 (12): 3595- 3602.
doi: 10.12305/j.issn.1001-506X.2022.12.02 |
|
20 | BREIMAN L . Bagging predictors[M]. New York: Machine Learning, 1996. |
21 | DONG S X , FENG W , QUAN Y H , et al. Deep ensemble CNN method based on sample expansion for hyperspectral image classification[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5531815. |
22 |
FENG W , HUANG W J , BAO W X . Imbalanced hyperspectral image classification with an adaptive ensemble method based on SMOTE and rotation forest with differentiated sampling rates[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (12): 1879- 1883.
doi: 10.1109/LGRS.2019.2913387 |
23 | 陈华杰, 吕丹妮, 周枭, 等. 遥感图像小样本舰船识别跨域迁移学习算法[J]. 遥感学报, 2024, 28 (3): 793- 804. |
CHEN H J , LYU D N , ZHOU X , et al. Cross-domain transfer learning algorithm for few-shot ship recognition in remote-sensing images[J]. National Remote Sensing Bulletin, 2024, 28 (3): 793- 804. | |
24 |
FENG W , DAUPHIN G , HUANG W J , et al. Dynamic synthetic minority over-sampling technique-based rotation forest for the classification of imbalanced hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (7): 2159- 2169.
doi: 10.1109/JSTARS.2019.2922297 |
25 |
FRANCISCO C , ANTONIO J R , MARÍA J , et al. Addressing imbalance in multilabel classification: measures and random resampling algorithms[J]. Neurocomputing, 2015, 163, 3- 16.
doi: 10.1016/j.neucom.2014.08.091 |
26 |
DEBES C , MERENTITIS A , HEREMANS R , et al. Hyperspectral and LiDAR data fusion: outcome of the 2013 GRSS data fusion contest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (6): 2405- 2418.
doi: 10.1109/JSTARS.2014.2305441 |
27 |
LE SAUX B , YOKOYA N , HANSCH R , et al. 2018 IEEE GRSS data fusion contest: multimodal land use classification[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6 (1): 52- 54.
doi: 10.1109/MGRS.2018.2798161 |
28 | KARANTZALOS K, KARAKIZI C, KANDYLAKIS Z, et al. HyRANK hyperspectral satellite dataset I (version V001)[data set][J]. Journal of Photogrammetry and Remote Sensing, 2018. DOI: 10.5281/zenodo.1222202. |
29 | JOHAN A K S . Support vector machines: a nonlinear modelling and control perspective[J]. European Journal of Control, 2001, 7 (2): 311- 327. |
30 |
COVER T , HART P . Nearest neighbor pattern classification[J]. IEEE Trans. on Information Theory, 1967, 13 (1): 21- 27.
doi: 10.1109/TIT.1967.1053964 |
[1] | Junzhi WANG, Weizhi ZHONG, Lijun XIAO, Xin WANG, Qiuming ZHU, Zhipeng LIN. Optimization method of indoor beam selection based on transfer learning [J]. Systems Engineering and Electronics, 2024, 46(3): 1109-1115. |
[2] | Xiaofeng ZHAO, Jiahui NIU, Chuntong LIU, Yuting XIA. Hyperspectral image classification based on hybrid convolution with three-dimensional attention mechanism [J]. Systems Engineering and Electronics, 2023, 45(9): 2673-2680. |
[3] | Wei FENG, Yijun LONG, Yinghui QUAN, Mengdao XING. Multi-class imbalance remote sensing image classification based on SMOTE and deep transfer convolutional neural network [J]. Systems Engineering and Electronics, 2023, 45(12): 3715-3725. |
[4] | Liru YANG, Yongxiang LIU, Wei YANG. Radar clutter amplitude statistical model selection based on transfer learning [J]. Systems Engineering and Electronics, 2022, 44(8): 2457-2467. |
[5] | Jingming SUN, Shengkang YU, Jun SUN. Radar small sample target recognition method based on meta learning and its improvement [J]. Systems Engineering and Electronics, 2022, 44(6): 1839-1845. |
[6] | Li HE, Liang SHEN, Hui LI, Zhuang WANG, Wenquan TANG. Survey on policy reuse in reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(3): 884-899. |
[7] | Tao WU, Lunwen WANG, Jingcheng ZHU. Camouflage image segmentation based on transfer learning and attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 376-384. |
[8] | Qinzhe LYU, Yinghui QUAN, Minghui SHA, Shuxian DONG, Mengdao XING. Ensemble deep learning-based intelligent classification of active jamming [J]. Systems Engineering and Electronics, 2022, 44(12): 3595-3602. |
[9] | Jun MA, Jingyu YANG, Liyan ZOU. Generation method of operational system of systems capability graph based on Stacking integrated meta-model [J]. Systems Engineering and Electronics, 2022, 44(1): 154-163. |
[10] | Shanxue CHEN, Xinxin WANG. Joint sparse representation hyperspectral image classification based on spatial preprocessing [J]. Systems Engineering and Electronics, 2021, 43(9): 2422-2429. |
[11] | Jiahui DING, Jianlong TANG, Zhengyang YU. Design of lightweight incremental ensemble learning algorithm [J]. Systems Engineering and Electronics, 2021, 43(4): 861-867. |
[12] | Yunhao SHI, Hua XU, Wanze ZHENG, Yinghui LIU. Few-shot modulation recognition method based on ensemble learning and feature dimension reduction [J]. Systems Engineering and Electronics, 2021, 43(4): 1099-1109. |
[13] | Hao CHEN, Jun'an YANG, Hui LIU. Communication transmitter individual identification based on deep residual adaptation network [J]. Systems Engineering and Electronics, 2021, 43(3): 603-609. |
[14] | Yuan YAN, Jun SUN, Jingming SUN, Junpeng YU. Radar few shot target recognition method and application analysis [J]. Systems Engineering and Electronics, 2021, 43(3): 684-692. |
[15] | Yongzheng LIU, Xuebin LIU, Wenlong LIU, Xin ZHANG, Xiaolai CHEN. Electromagnetic compatibility design of hyperspectral remote sensing high-speed imaging circuit [J]. Systems Engineering and Electronics, 2021, 43(1): 26-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||