Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (4): 861-867.doi: 10.12305/j.issn.1001-506X.2021.04.01
• Electronic Technology • Next Articles
Jiahui DING(), Jianlong TANG*(
), Zhengyang YU(
)
Received:
2020-08-10
Online:
2021-03-25
Published:
2021-03-31
Contact:
Jianlong TANG
E-mail:dingjiahuiee@qq.com;jltang@xidian.edu.cn;yzyang_2@stu.xidian.edu.cn
CLC Number:
Jiahui DING, Jianlong TANG, Zhengyang YU. Design of lightweight incremental ensemble learning algorithm[J]. Systems Engineering and Electronics, 2021, 43(4): 861-867.
Table 1
Standard deviation of each characteristic parameter under different SNR"
特征参数 | 信噪比/dB | |||
2 | 0 | -2 | -4 | |
脉宽/μs | 0.010 | 0.015 | 0.025 | 0.040 |
中心频率/MHz | 0.122 | 0.155 | 0.191 | 0.235 |
脉首频率/MHz | 0.311 | 0.393 | 0.477 | 0.588 |
脉尾频率/MHz | 0.307 | 0.381 | 0.462 | 0.568 |
带宽/MHz | 0.381 | 0.447 | 0.528 | 0.603 |
调频斜率/(MHz/μs) | 0.324 | 0.367 | 0.423 | 0.476 |
1 | BREIMAN L , FRIEDMAN J , OLSHEN R , et al. Classification and regression trees[M]. New York: Chapman and Hall, 1984: 130- 173. |
2 | 张亮, 宁芊. CART决策树的两种改进及应用[J]. 计算机工程与设计, 2015, 36 (5): 1209- 1213. |
ZHANG L , NING Q . Two improvements on CART decision tree and its application[J]. Computer Engineering and Design, 2015, 36 (5): 1209- 1213. | |
3 |
LIN S Q , LUO W . A new multilevel CART algorithm for multilevel data with binary outcomes[J]. Multivariate Behavioral Research, 2019, 54 (4): 578- 592.
doi: 10.1080/00273171.2018.1552555 |
4 |
JAWORSKI M , DUDA P , PIETRUCZUK L . The CART decision tree for mining data streams[J]. Information Sciences: An International Journal, 2014, 266, 1- 15.
doi: 10.1016/j.ins.2013.12.060 |
5 |
POLAKA I , TOM I , BORISOV A . Decision tree classifiers in bioinfor-matics[J]. Scientific Journal of Riga Technical University Computer Sciences, 2010, 42 (1): 118- 123.
doi: 10.2478/v10143-010-0052-4 |
6 | SOHN S Y , KIM J W . Decision tree-based technology credit scoring for start-up firms: Korean case[J]. Expert Systems with Applications, 2011, 39 (4): 4007- 4012. |
7 |
GALINDO J , TAMAYO P . Credit risk assessment using statistical and machine learning: basic methodology and risk modeling applications[J]. Computational Economics, 2000, 15 (1/2): 107- 143.
doi: 10.1023/A:1008699112516 |
8 |
DENG H X , DIAO Y F , WU W , et al. A high-speed D-CART online fault diagnosis algorithm for rotor systems[J]. Applied Intelligence: the International Journal of Research on Intelligent Systems for Real Life Complex Problems, 2020, 50 (2): 29- 41.
doi: 10.1007/s10489-019-01516-2 |
9 | HO T K. Random decision forest[C]//Proc. of the 3rd International Conference on Document Analysis and Recognition, 1995, 1: 278-282. |
10 |
BREIMAN L . Random forests[J]. Machine Learning, 2001, 45 (1): 5- 32.
doi: 10.1023/A:1010933404324 |
11 | 李兵, 韩睿, 何怡刚, 等. 改进随机森林算法在电机轴承故障诊断中的应用[J]. 中国电机工程学报, 2020, 40 (4): 1310- 1319, 1422. |
LI B , HAN R , HE Y G , et al. Applications of the improved random forest algorithm in fault diagnosis of motor bearings[J]. Proceedings of the CSEE, 2020, 40 (4): 1310- 1319, 1422. | |
12 |
ZHOU X Y , LU P , ZHENG Z J , et al. Accident prediction accuracy assessment for highway-rail grade crossings using random forest algorithm compared with decision tree[J]. Reliability Engineering and System Safety, 2020, 200, 106931.
doi: 10.1016/j.ress.2020.106931 |
13 |
ZHAO Y , SHI C , YANG T , et al. Low-complexity and joint modulation format identification and OSNR estimation using random forest for flexible coherent receivers[J]. Optics Communications, 2020, 457, 124698.
doi: 10.1016/j.optcom.2019.124698 |
14 | LITTLESTONE N. From on-line to batch learning[C]//Proc. of the Workshop on Computational Learning Theory, 1989: 269-284. |
15 |
DING S F , ZHANG N , ZHANG J , et al. Unsupervised extreme learning machine with representational features[J]. International Journal of Machine Learning and Cybernetics, 2017, 8 (2): 587- 595.
doi: 10.1007/s13042-015-0351-8 |
16 |
ZHANG J , DING S F , ZHANG N , et al. Incremental extreme learning machine based on deep feature embedded[J]. International Journal of Machine Learning and Cybernetics, 2016, 7 (1): 111- 120.
doi: 10.1007/s13042-015-0419-5 |
17 | 王文哲, 吴华, 索中英, 等. 粗糙K-means和AdaBoost结合的雷达辐射源快速识别算法[J]. 空军工程大学学报(自然科学版), 2016, 17 (1): 51- 55. |
WANG W Z , WU H , SUO Z Y , et al. A fast radar emitter recognition algorithm based on rough k-means combined with Adaboost[J]. Journal of Air Force Engineering University (Natural Science Edition), 2016, 17 (1): 51- 55. | |
18 | XU X, XIONG Z H, WANG W. Incremental discriminant analysis on interval-valued parameters for emitter identification[EB/OL]. [2020-08-01]. http://dx.doi.org/10.1155/2015/210729. |
19 | 方章闻, 张金艺, 李科, 等. 小样本条件下的通信辐射源半监督特征提取[J]. 系统工程与电子技术, 2020, 42 (10): 239- 247. |
FANG Z W , ZHANG J Y , LI K , et al. Semi-supervised feature extraction of communication emitter under small sample condition[J]. Systems Engineering and Electronics, 2020, 42 (10): 239- 247. | |
20 |
黄颖坤, 金炜东, 余志斌, 等. 基于深度学习和集成学习的辐射源信号识别[J]. 系统工程与电子技术, 2018, 40 (11): 2420- 2425.
doi: 10.3969/j.issn.1001-506X.2018.11.05 |
HUANG Y K , JIN W D , YU Z B , et al. Radar emitter signal recognition based on deep learning and ensemble learning[J]. Systems Engineering and Electronics, 2018, 40 (11): 2420- 2425.
doi: 10.3969/j.issn.1001-506X.2018.11.05 |
|
21 | POLIKAR R, BYORICK J, KRAUSE S. Learn++: a classifier independent incremental learning algorithm for supervised neural networks[C]//Proc. of the International Joint Conference on Neural Networks, 2002: 1742-1747. |
22 | DITZLER G , POLIKAR R , ROSEN G . Bootstrap based Neyman-Pearson test for identifying variable importance[J]. IEEE Trans. on Neural Networks and Learning Systems, 2015, (26): 880- 886. |
23 | GOMES H M , BARDDAL J P , ENEMBRECK F , et al. A survey on ensemble learning for data stream classification[J]. ACM Computing Surveys, 2017, 50 (2): 1- 36. |
24 | MUHLBAIER M , TOPALIS A , POLIKAR R . Learn++. MT: a new approach to incremental learning[J]. Multiple Classifier Systems, 2004, 3077, 52- 61. |
25 |
MUHLBAIER M , TOPALIS A , POLIKAR R . Learn++. NC: combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes[J]. IEEE Trans. on Neural Networks, 2009, 20 (1): 152- 168.
doi: 10.1109/TNN.2008.2008326 |
26 |
GROSSBERG S . Nonlinear neural networks: principles, mechanisms, and architectures[J]. IEEE Trans. on Neural Networks, 1988, 1 (1): 17- 61.
doi: 10.1016/0893-6080(88)90021-4 |
[1] | Qinzhe LYU, Yinghui QUAN, Minghui SHA, Shuxian DONG, Mengdao XING. Ensemble deep learning-based intelligent classification of active jamming [J]. Systems Engineering and Electronics, 2022, 44(12): 3595-3602. |
[2] | Jun MA, Jingyu YANG, Liyan ZOU. Generation method of operational system of systems capability graph based on Stacking integrated meta-model [J]. Systems Engineering and Electronics, 2022, 44(1): 154-163. |
[3] | Yunhao SHI, Hua XU, Wanze ZHENG, Yinghui LIU. Few-shot modulation recognition method based on ensemble learning and feature dimension reduction [J]. Systems Engineering and Electronics, 2021, 43(4): 1099-1109. |
[4] | Yicong SUN, Runlan TIAN, Huixu DONG, Liang SUN. Polyphase code signal recognition method based on SAMME+ResNet [J]. Systems Engineering and Electronics, 2020, 42(10): 2239-2245. |
[5] | ZHOU Yuchen, FANG Ke, MA Ping, YANG Ming. Complex simulation model validation method based on ensemble learning [J]. Systems Engineering and Electronics, 2018, 40(9): 2124-2130. |
[6] | HUANG Yingkun, JIN Weidong, YU Zhibin, WU Yunpu. Radar emitter signal recognition based on deep learning and ensemble learning [J]. Systems Engineering and Electronics, 2018, 40(11): 2420-. |
[7] | LIU Yang, FU Zheng-ye, ZHENG Feng-bin. Scene classification of high-resolution remote sensing image based on multimedia neural cognitive computing [J]. Systems Engineering and Electronics, 2015, 37(11): 2623-2633. |
[8] | HANG Yu-xi, WANG Xiao-dan, YAO Xu, SONG Ya-fei. Target recognition of fully polarimetric HRRP based on H/A/α decomposition [J]. Systems Engineering and Electronics, 2013, 35(12): 2501-2506. |
[9] | JIAO Ya-meng,HUANG Jian-guo,HOU Yun-shan. Fast maximum likelihood direction of arrival estimator based on ant colony optimization [J]. Journal of Systems Engineering and Electronics, 2011, 33(8): 1718-1721. |
[10] | HE Jie, FENG Da-zheng, LV Hui, XIANG Cong. Dimension-reduced 3D-STAP for airborne radars based on correlation matrix [J]. Journal of Systems Engineering and Electronics, 2011, 33(2): 286-289. |
[11] | FENG Dao-wang, LI Teng, HUANG Zhi-tao. Square-root form second-order EKF algorithm and its application in passive target motion analysis [J]. Journal of Systems Engineering and Electronics, 2009, 31(9): 2101-2105. |
[12] | JIN Yong1,2,LI Jie1,HUANG Jian-guo2. AML algorithm for short sampling wideband signal DOA estimation based on MetropolisHastings sampling [J]. Journal of Systems Engineering and Electronics, 2009, 31(12): 2809-2812. |
[13] | DONG Hang, SUN Hong. Adaptive filter based on coefficient order control and applied to acoustic echo cancellation [J]. Journal of Systems Engineering and Electronics, 2009, 31(1): 15-17,32. |
[14] | DONG Hang, SUN Hong. Adaptive filter based on coefficient order control and applied to acoustic echo cancellation [J]. Journal of Systems Engineering and Electronics, 2009, 31(01): 15-17,32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||