Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (5): 1176-1183.doi: 10.12305/j.issn.1001-506X.2021.05.03
• Electronic Technology • Previous Articles Next Articles
Mingjie SUN1,*(), Lin ZHOU1(
), Jinling GU2(
), Peigeng LI3(
)
Received:
2020-08-06
Online:
2021-05-01
Published:
2021-04-27
Contact:
Mingjie SUN
E-mail:sunmj1982@163.com;houlin_36@163.com;3449888544qq.com;738284769@qq.com
CLC Number:
Mingjie SUN, Lin ZHOU, Jinling GU, Peigeng LI. Infrared target tracking algorithm based on multi-domain network[J]. Systems Engineering and Electronics, 2021, 43(5): 1176-1183.
Table 1
Comparision with five other trackers in accuracy and speed"
参数 | 跟踪算法 | ||||||
SPMDnetOurs | MDNet | KCF | LCT | TLD | LSST | ||
lwir_1608 | DPR/% | 100.0 | 100.0 | 68.3 | 94.5 | 85.20 | 84.10 |
OSR/% | 67.2 | 57.6 | 1.7 | 13.8 | 0.30 | 73.80 | |
FPS | 6.2 | 6.4 | 273.0 | 20.1 | 41.20 | 7.80 | |
lwir_1913 | DPR/% | 94.0 | 59.2 | 60.0 | 63.0 | 91.30 | 99.60 |
OSR/% | 61.5 | 41.1 | 51.7 | 22.6 | 0.40 | 48.70 | |
FPS | 4.2 | 4.3 | 177.0 | 16.9 | 26.30 | 6.50 | |
平均值 | DPR/% | 97.0 | 79.6 | 64.2 | 78.8 | 88.30 | 91.85 |
OSR/% | 64.4 | 49.4 | 26.7 | 18.2 | 0.35 | 61.25 | |
FPS | 5.2 | 5.4 | 225.0 | 18.5 | 33.80 | 7.15 |
1 | 卢湖川, 李佩霞, 王栋. 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31 (1): 61- 76. |
LU H C , LI P X , WANG D . Visual object tracking: a survey[J]. Pattern Recognition and Artificial Intelligence, 2018, 31 (1): 61- 76. | |
2 | 胡阳光, 肖明清, 张凯, 等. 传统特征和深度特征融合的红外空中目标跟踪[J]. 系统工程与电子技术, 2019, 41 (12): 2675- 2683. |
HU Y G , XIAO M Q , ZHANG K , et al. Infrared aerial target tracking based on fusion of traditional feature and deep feature[J]. Systems Engineering and Electronics, 2019, 41 (12): 2675- 2683. | |
3 | LI B, WU W, WANG Q, et al. SiamRPN++: evolution of Siamese visual tracking with very deep networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, 4277-4286. |
4 |
LEITLOFF J , ROSENBAUM D , KURZ F , et al. An operational system for estimating road traffic information from aerial images[J]. Remote Sensing, 2014, 6, 11315- 11341.
doi: 10.3390/rs61111315 |
5 | HU Y G , XIAO M Q , ZHANG K , et al. Aerial infrared target tracking in complex background based on combined tracking and detecting[J]. Mathematical Problems in Engineering, 2019, 18, 1- 17. |
6 |
WANG X T , ZHANG K , LI S Y , et al. An optimal long-term aerial infrared object tracking algorithm with re-detection[J]. IEEE Access, 2019, 7, 114320- 114333.
doi: 10.1109/ACCESS.2019.2929749 |
7 | HU Y G , XIAO M Q , LI S Y , et al. Aerial infrared target tracking based on a Siamese network and traditional features[J]. Infrared Physics & Technology, 2020, 111, 103505. |
8 |
HUANG H S , TONG Z X , CHAI S C , et al. Experimental and numerical study of chaff cloud kinetic performance under impact of high-speed airflow[J]. Chinese Journal of Aeronautics, 2018, 31 (11): 2080- 2092.
doi: 10.1016/j.cja.2018.08.002 |
9 | 卢杨, 张磊, 郭立媛, 等. 基于改进纹理特征的红外目标跟踪算法[J]. 液晶与显示, 2018, 33 (12): 71- 77. |
LU Y , ZHANG L , GUO L Y , et al. Infrared target tracking based on improved LBP feature[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33 (12): 71- 77. | |
10 | 钱琨. 基于机器学习理论的红外目标跟踪技术研究[D]. 西安: 西安电子科技大学, 2019. |
QIAN K. Study on infrared target tracking technology based on machine learning theory[D]. Xi'an: Xidian University, 2019. | |
11 | LAMBERTI F , SANNA A , PARAVATI G . Improving robustness of infrared target tracking algorithms based on template matching[J]. IEEE Trans.on Aerospace & Electronics Systems, 2011, 47 (2): 1467- 1480. |
12 | MOULD N A, NGUYEN C T, HAVLICEK J P, et al. Infrared target tracking with AM-FM consistency checks[C]// Proc. of the IEEE Southwest Symposium on Image Analysis and Interpretation, 2008. |
13 |
LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015, 521, 436- 444.
doi: 10.1038/nature14539 |
14 | NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4293-4302. |
15 | SAMMEN S S , GHORBANI M A , MALIK A , et al. Enhanced artificial neural network with Harris Hawks optimization for predicting scour depth downstream of ski-jump spillway[J]. Applied Sciences-Basel, 2020, 10 (15): 1- 16. |
16 | WANG Z , WANG B , LIU C , et al. Improved BP neural network algorithm to wind power forecast[J]. The Journal of Engineering, 2017, 13, 940- 943. |
17 | XIE R, WANG X M, LI Y, et al. Research and application on improved BP neural network algorithm[C]//Proc. of the IEEE Industrial Electronics & Applications, 2010: 1462-1466. |
18 |
HAN X D , KANG Y , SHENG J P , et al. Centrifugal pump impeller and volute shape optimization via combined NUMECA, genetic algorithm, and back propagation neural network[J]. Structural and Multidisciplinary Optimization, 2019, 61, 381- 409.
doi: 10.1007/s00158-019-02367-8 |
19 |
YE Y F , WANG Z X , ZHANG X B . An optimal pointwise weighted ensemble of surrogates based on minimization of local mean square error[J]. Structural and Multidisciplinary Optimization, 2020, 62 (2): 529- 542.
doi: 10.1007/s00158-020-02508-4 |
20 |
LIU W , POKHAREL P P , PRINCIPE J C . Correntropy: properties and applications in non-Gaussian signal processing[J]. IEEE Trans.on Signal Processing, 2007, 55 (11): 5286- 5298.
doi: 10.1109/TSP.2007.896065 |
21 |
LI H C , WANG W Y , PAN L , et al. Robust capsule network based on maximum correntropy criterion for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 738- 751.
doi: 10.1109/JSTARS.2020.2968930 |
22 |
YI S , MA H M , LI X , et al. WSODPB: weakly supervised object detection with PCSNet and box regression module[J]. Neurocomputing, 2020, 418, 232- 240.
doi: 10.1016/j.neucom.2020.08.028 |
23 | 胡阳光, 肖明清, 刘兆政, 等. 基于序列复杂度的空中红外目标跟踪算法评估[J]. 系统工程与电子技术, 2020, 42 (4): 740- 748. |
HU Y G , XIAO M Q , LIU Z Z , et al. Aerial infrared target tracking algorithm evaluation based on complexity of sequence[J]. Systems Engineering and Electronics, 2020, 42 (4): 740- 748. | |
24 | KRISTAN M, LEONARDIS A, MATAS J, et al. The visual object tracking VOT 2016 challenge results[C]//Proc. of the European Conference on Computer Vision, 2016. |
25 |
SUN L F , YU H F , FU Z M , et al. A fast measurement partitioning algorithm for multiple extended target tracking[J]. Electronics Letters, 2020, 56 (16): 832- 834.
doi: 10.1049/el.2020.0984 |
26 |
WANG F L , ZHEN W , ZHONG B N , et al. Robust infrared target tracking based on particle filter with embedded saliency detection[J]. Information Sciences: An International Journal, 2015, 301, 215- 226.
doi: 10.1016/j.ins.2014.12.022 |
27 | WANG D, LU H, YANG M H. Least soft-threshold squares tracking[C]//Proc. of the IEEE Conference on Computer Vision & Pattern Recognition, 2013: 583-596. |
28 |
KALAL Z , MIKOLAJCZYK K , MATAS J . Tracking-learning-detection[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012, 34 (7): 1409- 1422.
doi: 10.1109/TPAMI.2011.239 |
29 |
HENRIQUES J F , CASEIRO R , MARTINS P , et al. High-speed tracking with kernelized correlation filters[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 583- 596.
doi: 10.1109/TPAMI.2014.2345390 |
30 | MA C, YANG X K, ZHANG C Y, et al. Long-term correlation tracking[C]//Proc. of the Computer Vision & Pattern Recognition, 2015: 5388-5396. |
[1] | Xiao HAN, Shiwen CHEN, Meng CHEN, Jincheng YANG. Open-set recognition of LPI radar signal based on reciprocal point learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2752-2759. |
[2] | Zhuling QIU, Yufei ZHA, Zhenyu LI, Yuming LI, Peng ZHANG, Chuan ZHU. Temporal regularized correlation filter tracking algorithm based on multi-model distillation [J]. Systems Engineering and Electronics, 2022, 44(8): 2448-2456. |
[3] | Zilin HOU, Ting CHENG, Han PENG. GMPHD based on measurement conversion sequential filtering for maneuvering target tracking [J]. Systems Engineering and Electronics, 2022, 44(8): 2474-2482. |
[4] | Limin ZHANG, Kaiwen TAN, Wenjun YAN, Yuyuan ZHANG. Radar emitter recognition based on multi-level jumper residual network [J]. Systems Engineering and Electronics, 2022, 44(7): 2148-2156. |
[5] | Haoran SHI, Faxing LU, Jiangxin QI, Guang YANG. Cooperative target tracking of UAVs based on aided beacon [J]. Systems Engineering and Electronics, 2022, 44(7): 2302-2310. |
[6] | Guodong JIN, Yuanliang XUE, Lining TAN, Jiankun XU. Advances in object tracking algorithm based on siamese network [J]. Systems Engineering and Electronics, 2022, 44(6): 1805-1822. |
[7] | Xiaofeng ZHAO, Yebin XU, Fei WU, Jiahui NIU, Wei CAI, Zhili ZHANG. Ground infrared target detection method based on global sensing mechanism [J]. Systems Engineering and Electronics, 2022, 44(5): 1461-1467. |
[8] | Shuai WANG, Jianjun XIANG, Fang PENG, Shujuan TANG. Target tracking algorithm based on a new steepest descent method [J]. Systems Engineering and Electronics, 2022, 44(5): 1512-1519. |
[9] | Hong ZOU, Chenyang BAI, Peng HE, Yaping CUI, Ruyan WANG, Dapeng WU. Edge service placement strategy based on distributed deep learning [J]. Systems Engineering and Electronics, 2022, 44(5): 1728-1737. |
[10] | Huaisheng XIN, Chen CAO. Interacting multiple model based grouping δ-generalized labeledmulti-Bernoulli algorithm [J]. Systems Engineering and Electronics, 2022, 44(4): 1128-1138. |
[11] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[12] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[13] | Jiahao XIE, Shucai HUANG, Daozhi WEI, Zhaoyu ZHANG, Wenhao WANG. Solution for uncertain hybrid multi-sensor alliance based on PEV principle [J]. Systems Engineering and Electronics, 2022, 44(3): 819-826. |
[14] | Zizhuang SONG, Jiawei YANG, Dongfang ZHANG, Shiqiang WANG, Shuo ZHANG. Real-time infrared multi-class multi-target anchor-free tracking network [J]. Systems Engineering and Electronics, 2022, 44(2): 401-409. |
[15] | Yunxiang YAO, Ying CHEN. Target tracking network based on dual-modal interactive fusion under attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 410-419. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||