| 1 | ZHENG X T ,  HUANG H ,  LI W P .  A modified active disturbance rejection control for fast steering mirror in aerospace application[J]. Journal of Physics: Conference Series, 2020, 1509 (1): 012028. doi: 10.1088/1742-6596/1509/1/012028
 | 
																													
																						| 2 | LIN D, WU Y M, ZHU F. Research on precision tracking on fast steering mirror and control strategy[C]//Proc. of the International Conference on Power and Energy Engineering, 2018: 012009. | 
																													
																						| 3 | PEREIRA P D V ,  HUNWARDSEN M T ,  CAHOY K .  Characterization of laser thermal loading on microelectromechanical sytems-based fast steering mirror in vacuum[J]. Optical Engineering, 2020, 59 (5): 056109. | 
																													
																						| 4 | ZHANG M, LIANG Y B. Compound tracking in ATP system for free space optical communication[C]//Proc. of the IEEE International Conference on Mechatronic Science, Electric Engineering and Computer, 2011: 454-456. | 
																													
																						| 5 | LIU W ,  YAO K N ,  HUANG D N , et al.  Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency[J]. Optics Express, 2016, 24 (12): 13288- 13302. doi: 10.1364/OE.24.013288
 | 
																													
																						| 6 | DONG Z C ,  JIANG A M ,  DAI Y F , et al.  Space-qualified fast steering mirror for an image stabilization system of space astronomical telescopes[J]. Applied Optics, 2018, 57 (31): 9307- 9315. doi: 10.1364/AO.57.009307
 | 
																													
																						| 7 | WILLIAMS R J ,  KITZLER O ,  BAI Z X , et al.  High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24 (5): 1602214. | 
																													
																						| 8 | 邹紫盛, 丛爽, 尚伟伟, 等.  量子定位中精跟踪系统状态滤波及控制器设计[J]. 系统工程与电子技术, 2019, 41 (3): 601- 610. | 
																													
																						|  | ZOU Z S ,  CONG S ,  SHANG W W , et al.  State filtering and controller design for fine tracking system in quantum positioning[J]. Systems Engineering and Electronics, 2019, 41 (3): 601- 610. | 
																													
																						| 9 | 赵继庭, 金刚石, 高旭辉.  基于快速反射镜的模糊自适应PID控制算法研究[J]. 激光与红外, 2018, 48 (6): 756- 761. doi: 10.3969/j.issn.1001-5078.2018.06.016
 | 
																													
																						|  | ZHAO J T ,  JIN G S ,  GAO X H .  Fuzzy adaptive PID control algorithm based on fast steering mirror[J]. Laser & Infrared, 2018, 48 (6): 756- 761. doi: 10.3969/j.issn.1001-5078.2018.06.016
 | 
																													
																						| 10 | CHEN C ,  CAO H B ,  DING L , et al.  Trajectory tracking control of WMRs with lateral and longitudinal slippage based on active disturbance rejection control[J]. Robotics and Autonomous Systems, 2018, 140 (107): 236- 245. | 
																													
																						| 11 | WANG K D, SU X Q, LI Z, et al. ADRC system of FSM for image motion compensation[C]//Proc. of the 2nd International Conference on Photonics and Optical Engineering, 2017: 1025604. | 
																													
																						| 12 | DONG Q R ,  LIU Y K ,  ZHANG Y L , et al.  Improved ADRC with ILC control of a CCD-based tracking loop for fast steering mirror system[J]. IEEE Photonics Journal, 2018, 10 (4): 6601314. | 
																													
																						| 13 | 黄浦, 杨秀丽, 修吉宏, 等.  音圈致动快速反射镜的降阶自抗扰控制[J]. 光学精密工程, 2020, 28 (6): 1365- 1374. | 
																													
																						|  | HUANG P ,  YANG X L ,  XIU J H , et al.  Reduced-order active disturbance rejection control of fast steering mirror driven by VCA[J]. Optics and Precision Engineering, 2020, 28 (6): 1365- 1374. | 
																													
																						| 14 | CUI N, LIU Y, CHEN X I, et al. Active disturbance rejection controller of fine tracking system for IREE space optical communication[C]//Proc. of the Society of Photo Optical Instrumentation Engineers Conference, 2013: 890613. | 
																													
																						| 15 | LIU J J ,  SUN M W ,  CHEN Z Q , et al.  High AOA decoupling control for aircraft based on ADRC[J]. Journal of Systems Engineering and Electronics, 2020, 31 (2): 393- 402. doi: 10.23919/JSEE.2020.000016
 | 
																													
																						| 16 | YANG R G ,  SUN M W ,  CHEN Z Q .  Active disturbance rejection control on first-order plant[J]. Journal of Systems Engineering and Electronics, 2011, 22 (1): 95- 102. doi: 10.3969/j.issn.1004-4132.2011.01.012
 | 
																													
																						| 17 | WANG Y Q ,  ZHANG G C ,  SHI Z B , et al.  Finite-time speed control of marine diesel engine based on ADRC[J]. Mathematical Problems in Engineering, 2020, 2709460. | 
																													
																						| 18 | HAN J Q .  From PID to active disturbance rejection control[J]. IEEE Trans.on Industrial Electronics, 2009, 56 (3): 900- 906. doi: 10.1109/TIE.2008.2011621
 | 
																													
																						| 19 | KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proc. of the IEEE lnternational Conference on Neural Networks, 1995: 1942-1948. | 
																													
																						| 20 | AKKOUCHE N ,  BALISTROU M ,  LOUB-AR K , et al.  Pyrolysis polybutadiene model including self-heating and self-cooling effects: kinetic study via particle swarm optimization[J]. Waste and Biomass Valorization, 2020, 11 (2): 653- 667. doi: 10.1007/s12649-018-0538-9
 | 
																													
																						| 21 | LI H Z ,  WANG Y .  Particle swarm optimization for rigid body reconstruction after micro-Doppler removal in radar analysis[J]. Journal of Systems Engineering and Electronics, 2020, 31 (3): 488- 499. doi: 10.23919/JSEE.2020.000023
 | 
																													
																						| 22 | ZHANG X L ,  TAN Y J ,  YANG Z W .  Resource allocation optimization of equipment development task based on MOPSO algorithm[J]. Journal of Systems Engineering and Electronics, 2019, 30 (6): 1132- 1143. doi: 10.21629/JSEE.2019.06.09
 | 
																													
																						| 23 | XU Z ,  ZHANG E Z ,  CHEN Q W .  Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization[J]. Journal of Systems Engineering and Electronics, 2020, 31 (1): 130- 141. | 
																													
																						| 24 | WANG Q Q ,  LI Z D ,  WANG W W , et al.  Multi-objective optimization design of wheat centralized seed feeding device based on particle swarm optimization (PSO) algorithm[J]. International Journal of Agricultural and Biological Engineering, 2020, 13 (6): 76- 84. doi: 10.25165/j.ijabe.20201306.5665
 | 
																													
																						| 25 | SHI Y H, EBERHART R. A modified particle swarm optimizer[C]//Proc. of the IEEE World Congress on Computational Intelligence, 1998: 69-73. | 
																													
																						| 26 | 南杰琼, 王晓东.  改进惯性权值的粒子群优化算法[J]. 西安工程大学学报, 2017, 31 (6): 836- 838. | 
																													
																						|  | NAN J Q ,  WANG X D .  Particle swarm optimization algorithm with improved inertia weight[J]. Journal of Xi'an Polytechnic University, 2017, 31 (6): 836- 838. | 
																													
																						| 27 | 张继荣, 张天.  基于改进粒子群算法的PID控制参数优化[J]. 计算机工程与设计, 2020, 41 (4): 1035- 1040. | 
																													
																						|  | ZHANG J R ,  ZHANG T .  Optimization of PID control parameters based on improved particle group algorithm[J]. Computer Engineering and Design, 2020, 41 (4): 1035- 1040. | 
																													
																						| 28 | ZHANG G H ,  HU Y F ,  SUN J H , et al.  An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints[J]. Swarm and Evolutionary Computation, 2020, 54 (4): 100664. | 
																													
																						| 29 | MIRJALILI S .  Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27 (4): 1053- 1073. doi: 10.1007/s00521-015-1920-1
 | 
																													
																						| 30 | WITTING M, VAN H L, TUNBRIDGE D E L, et al. In-orbit measurements of micro accelerations of ESA's communication satellite Olympus[C]//Proc. of the Free-Space Laser Communication Technologies Ⅱ, 1990: 205-214. |