

系统工程与电子技术 ›› 2026, Vol. 48 ›› Issue (1): 157-171.doi: 10.12305/j.issn.1001-506X.2026.01.15
杨克巍1, 徐任杰1,2,*(
), 姜九瑶1, 李际超1, 杨志伟1, 宫琳2
收稿日期:2022-12-27
出版日期:2026-01-25
发布日期:2026-02-11
通讯作者:
徐任杰
E-mail:xurenjie@nudt.edu.cn
作者简介:杨克巍(1977—),男,教授,博士研究生导师,博士,主要研究方向为体系需求建模、体系结构设计与优化、系统建模与仿真基金资助:
Kewei YANG1, Renjie XU1,2,*(
), Jiuyao JIANG1, Jichao LI1, Zhiwei YANG1, Lin GONG2
Received:2022-12-27
Online:2026-01-25
Published:2026-02-11
Contact:
Renjie XU
E-mail:xurenjie@nudt.edu.cn
摘要:
未来战争中呈现出作战要素分布式更广、协同性更强、自主性更高等智能化特征,战争对抗中体系韧性则综合诠释和反映上述特点,科学可信的韧性评估对设计未来战争概念、指导智能化体系建设等具有重要的理论与应用价值。在界定韧性评估概念基础上,梳理面向作战的体系韧性评估方法并对其未来发展趋势进行展望。总结面向作战的体系韧性的概念内涵、演化模型及特征,借助系统思想从结构、功能、行为及综合视角对面向作战的体系韧性评估方法进行了分析,提出体系韧性评估的未来发展趋势。对其他领域体系韧性评估工作提供参考,全面推动智能化时代体系研究的快速发展。
中图分类号:
杨克巍, 徐任杰, 姜九瑶, 李际超, 杨志伟, 宫琳. 面向作战的体系韧性评估方法研究综述及展望[J]. 系统工程与电子技术, 2026, 48(1): 157-171.
Kewei YANG, Renjie XU, Jiuyao JIANG, Jichao LI, Zhiwei YANG, Lin GONG. Review and prospect of combat-oriented system-of-systems resilience evaluation method[J]. Systems Engineering and Electronics, 2026, 48(1): 157-171.
表2
不同学科领域的体系韧性定义"
| 序号 | 学科领域 | 定义 |
| 1 | 组织管理[ | 企业有效吸收、制定针对具体情况的应对措施的能力并最终参与变革活动以利用可能威胁组织生存的破坏性意外的能力。 |
| 2 | 卫生[ | 包含3个能力:吸收能力、适应能力和转变能力。吸收能力是指卫生系统利用相对水平的资源和能力,在受到冲击的情况下,继续向人口提供相同水平的基本保健服务和保护的能力;适应能力是指卫生系统参与者以更少的资源提供相同水平的医疗服务的能力,这需要进行组织调整;转变能力是指卫生系统行为者转变卫生系统功能和结构以应对变化环境的能力。 |
| 3 | 心理[ | 心理过程和行为在促进个人资产或保护个人免受压力源潜在负面影响的作用。 |
| 4 | 基础设施[ | 基础设施体系通过减少初始负面影响、适应负面影响和从负面影响中恢复来抵御破坏性事件的能力。 |
| 5 | 社区抗灾[ | 将适应能力与干扰或逆境后的适应联系起来的过程。 |
| 6 | 社会-生态[ | 社会生态系统发生变化时,以继续支持人类福祉的方式进行适应或转变的能力。 |
| 7 | 物流与供应链[ | 物流与供应链的适应能力,能够为突发事件做好准备,应对中断,并通过在所需的连接水平上保持运营的连续性和对结构和功能的控制来从中恢复。 |
| 8 | 经济[ | 区域或地方经济承受或恢复其发展增长道路的市场、竞争和环境冲击的能力。 |
表4
面向作战的体系韧性的特征"
| 特征 | 含义 |
| 智能性 | 武器系统可进行一定程度的自主决策,能够做出调整,以准备、响应和从破坏中恢复。 |
| 自组织 | 武器系统可以无需外部干预完成队形编配、任务分配和局部要素协作调整。 |
| 冗余性 | 确保某一个武器系统或某一类功能受损时,仍然能够依靠其他系统或可替代类型装备,保证作战能力正常持续输出。 |
| 适应性 | 每次扰动后及时采取物理上的修复或结构上的调整,以更好地准备、响应下一次扰动,学习到的作战经验被应用到适应能力中。 |
| 抗毁性 | 当遭受内部扰动或外部打击时,维持或恢复性能到一个可接受的程度。 |
| 鲁棒性 | 受内部扰动或外部打击时,保持性能不变的能力。 |
| 协同性 | 各类武器系统之间存在高度耦合关系,通过更泛在的协同实现情报、信息和资源的共享与高效利用。 |
| 涌现性 | 强调武器系统之间关联的泛在性,超越了传统系统“1+1>2”的线性效果。 |
表5
基于复杂网络的体系韧性参数及其定义、数学表达式"
| 参数 | 网络中的定义 | 面向作战的体系中的定义 | 数学表达式 |
| 边数节点比 | 网络中的边数量与节点数量的比值 | 体系中所消耗的资源量 (成本韧性) | 式中:L表示边的数量;N表示节点的数量 |
| 平均路径长度 | 网络任意两个节点间距离的平均值 | 体系中装备的物质流、能量流和信息流的传递能力 (能力传递韧性) | 式中:dij表示节点i与节点j之间的最短路径上的边数 |
| 网络聚集系数 | 网络中一个节点与邻节点之间 相互连接的程度 | 体系中各个装备之间的相互协调能力 (作战协同韧性) | 式中:ki表示节点i连接的邻节点数量;Ei为节点i相连的ki个节点之间实际存在的边数 |
| 自然连通度 | 网络中不同长度闭环数目的加权和 | 体系中可选择作战路径的冗余性 (冗余韧性) | 式中:S’表示网络中路径的数量 |
| 网络鲁棒性 | 网络崩溃程度 | 体系保持自身稳定性的能力 (抗毁性韧性) | 式中:N’表示受到攻击后移除网络中部分节点后网络最大连通子图的节点数 |
| 1 | EDLUND G. Space systems resiliency: definition, measurement, and application [R]. Washington D.C.: Air Force Space Command, 2013. |
| 2 | MADNI A M, JACKSON S. Towards a conceptual framework for resilience engineering[J]. IEEE Systems Journal, 2009, 3(2): 181−191. |
| 3 | Department of Defense, Space Policy. DoD Directive 3100.10[EB/OL]. [2022-12-01]. https://ocw.mit.edu/courses/16-891j-space-policy-seminar-spring-2003/7014725c53e69dc9f404b2a3d21c5374_dodspacepol.pdf. |
| 4 |
潘星, 张国忠, 张跃东, 等. 工程弹性系统与系统弹性理论研究综述[J]. 系统工程与电子技术, 2019, 41 (9): 2006- 2015.
doi: 10.3969/j.issn.1001-506X.2019.09.13 |
|
PAN X, ZHANG G Z, ZHANG Y D. Review of engineered resilient systems and system resilience theory[J]. Systems Engineering and Electronics, 2019, 41 (9): 2006- 2015.
doi: 10.3969/j.issn.1001-506X.2019.09.13 |
|
| 5 |
HOLLING C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4, 1- 23.
doi: 10.1146/annurev.es.04.110173.000245 |
| 6 | HOLLING C S. Engineering resilience versus ecological resilience[EB/OL]. [2022-12-01]. https://www.nationalacademies.org/read/4919/chapter/4. |
| 7 |
HOLLING C S. Understanding the complexity of economic, ecological, and social systems[J]. Ecosystems, 2001, 4 (5): 390- 405.
doi: 10.1007/s10021-001-0101-5 |
| 8 | ARTIME O, GRASSIA M, DOMENICO M D, et al. Robustness and resilience of complex networks[J]. Nature Reviews Physics, 2024, 6(2): 114–131. |
| 9 |
HOSSEINI S, BARKER K, RAMIREZ-MARQUEZ J E. A review of definitions and measures of system resilience[J]. Reliability Engineering and System Safety, 2016, 145, 47- 61.
doi: 10.1016/j.ress.2015.08.006 |
| 10 |
MIARA A, MACKNICK J E, VOROSMARTY C J, et al. Climate and water resource change impacts and adaptation potential for US power supply[J]. Nature Climate Change, 2017, 7 (11): 793- 798.
doi: 10.1038/nclimate3417 |
| 11 |
WANG W, YANG S, STANLEY H E, et al. Local floods induce large-scale abrupt failures of road networks[J]. Nature Communications, 2019, 10 (1): 2144.
doi: 10.1038/s41467-019-09879-3 |
| 12 |
HYNES W, TRUMP B D, KIRMAN A, et al. Systemic resilience in economics[J]. Nature Physics, 2022, 18 (4): 381- 384.
doi: 10.1038/s41567-022-01581-4 |
| 13 |
MAHONEY E, GOLAN M, KURTH M, et al. Resilience-by-design and resilience-by-intervention in supply chains for remote and indigenous communities[J]. Nature Communications, 2022, 13 (1): 1124.
doi: 10.1038/s41467-022-28734-6 |
| 14 |
BUCHANAN R K, GOERGER S R, RINAUDO C H, et al. Resilience in engineered resilient systems[J]. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 2020, 17 (4): 435- 446.
doi: 10.1177/1548512918777901 |
| 15 | LIAO K. A theory on urban resilience to floods--a basis for alternative planning practices[J]. Ecology and Society, 2012, 17(4): 388−395. |
| 16 |
GANIN A A, KITSAK M, MARCHESE D, et al. Resilience and efficiency in transportation networks[J]. Science Advances, 2017, 3 (12): e1701079.
doi: 10.1126/sciadv.1701079 |
| 17 |
LENGNICK-HALL C A, BECK T E, LENGNICK-HALL M L. Developing a capacity for organizational resilience through strategic human resource management[J]. Human Resource Management Review, 2011, 21 (3): 243- 255.
doi: 10.1016/j.hrmr.2010.07.001 |
| 18 |
BLANCHET K, NAM S L, RAMALINGAM B, et al. Governance and capacity to manage resilience of health systems: towards a new conceptual framework[J]. International Journal of Health Policy and Management, 2017, 6 (8): 431- 435.
doi: 10.15171/ijhpm.2017.36 |
| 19 |
FLETCHER D, SARKAR M. Psychological resilience: a review and critique of definitions, concepts, and theory[J]. European Psychologist, 2013, 18 (1): 12- 23.
doi: 10.1027/1016-9040/a000124 |
| 20 |
LIU W, SONG Z Y. Review of studies on the resilience of urban critical infrastructure networks[J]. Reliability Engineering and System Safety, 2020, 193, 106617.
doi: 10.1016/j.ress.2019.106617 |
| 21 |
NAN C, SANSAVINI G. A quantitative method for assessing resilience of interdependent infrastructures[J]. Reliability Engineering and System Safety, 2017, 157, 35- 53.
doi: 10.1016/j.ress.2016.08.013 |
| 22 |
BRUNEAU M, CHANG S E, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19 (4): 733- 752.
doi: 10.1193/1.1623497 |
| 23 | NORRIS F H, STEVENS S P, PFEFFERBAUM B, et al. Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness[J]. American Journal of Community Psychology, 2008, 41 (1/2): 127- 150. |
| 24 |
FOLKE C, BIGGS R, NORSTROM A V, et al. Social-ecological resilience and biosphere-based sustainability science[J]. Ecology and Society, 2016, 21 (3): 41.
doi: 10.5751/ES-08748-210341 |
| 25 |
PONOMAROV S Y, HOLCOMB M C. Understanding the concept of supply chain resilience[J]. The International Journal of Logistics Management, 2009, 20 (1): 124- 143.
doi: 10.1108/09574090910954873 |
| 26 |
MARTIN R, SUNLEY P. On the notion of regional economic resilience: conceptualization and explanation[J]. Journal of Economic Geography, 2015, 15 (1): 1- 42.
doi: 10.1093/jeg/lbu015 |
| 27 | 军事科学院. 中国人民解放军[M]. 北京: 军事科学出版社, 2011. |
| Academy of Military Science. The People’s Liberation Army[M]. Beijing: Military Science Press, 2011. | |
| 28 |
GOERGER S R, MADNI A M, ESLINGER O J. Engineered resilient systems: a DoD perspective[J]. Procedia Computer Science, 2014, 28, 865- 872.
doi: 10.1016/j.procs.2014.03.103 |
| 29 | HUMMEL J, BLAKE D, GUZOWSKY L, et al. Final report for the workshop on analytical support for societal and regional resiliency in support of national security[R]. Argonne: Argonne National Laboratory, 2014. |
| 30 |
徐任杰, 宫琳, 谢剑, 等. 基于装备体系韧性的作战网络链路重要度评估及恢复策略[J]. 系统工程与电子技术, 2023, 45 (1): 139- 147.
doi: 10.12305/j.issn.1001-506X.2023.01.17 |
|
XU R J, GONG L, XIE J. Resilience-based link importance evaluation and recovery strategy for equipment system-of-systems[J]. Systems Engineering and Electronics, 2023, 45 (1): 139- 147.
doi: 10.12305/j.issn.1001-506X.2023.01.17 |
|
| 31 |
WOODS D D. Four concepts for resilience and the implications for the future of resilience engineering[J]. Reliability Engineering and System Safety, 2015, 141, 5- 9.
doi: 10.1016/j.ress.2015.03.018 |
| 32 |
李鸿旭, 孙沁, 周丽萍, 等. 韧性网络信息体系的技术框架分析[J]. 中国电子科学研究院学报, 2021, 16 (8): 756- 764.
doi: 10.3969/j.issn.1673-5692.2021.08.003 |
|
LI H X, SUN Q, ZHOU L P. Technical framework analysis of resilient networking information-centric system of systems[J]. Journal of China Academy of Electronics and Information Technology, 2021, 16 (8): 756- 764.
doi: 10.3969/j.issn.1673-5692.2021.08.003 |
|
| 33 |
费爱国. 韧性指挥与控制系统设计相关问题探析[J]. 指挥信息系统与技术, 2017, 8 (2): 1- 4.
doi: 10.15908/j.cnki.cist.2017.02.001 |
|
FEI A G. Analysis on related issues about resilient command and control system design[J]. Command Information System and Technology, 2017, 8 (2): 1- 4.
doi: 10.15908/j.cnki.cist.2017.02.001 |
|
| 34 | 卜广志. 武器装备体系的体系结构与体系效能[J]. 系统工程与电子技术, 2006, 28 (10): 1544- 1548. |
| BU G Z. Study on the architecture and effectiveness for armament systems[J]. Systems Engineering and Electronics, 2006, 28 (10): 1544- 1548. | |
| 35 | 李锴, 吴纬. 基于复杂网络的武器装备体系研究现状[J]. 装甲兵工程学院学报, 2016, 30(4): 7−13. |
| LI K, WU W. Research status of weapon equipment system-of-systems basede on complex network[J]. Journal of Academy of Armored Force Engineering, 2016, 30(4): 7−13. | |
| 36 | WATSON B, CHOWDHRY A, WEISSBURG M, et al. A new resilience metric to compare system of systems architecture[J]. IEEE Systems Journal, 2021, 16 (2): 2056- 2067. |
| 37 |
荣明, 胡晓峰, 杨镜宇. 基于动态超网的作战体系结构弹性分析评估研究[J]. 系统仿真学报, 2019, 31 (6): 1055- 1061.
doi: 10.16182/j.issn1004731x.joss.19-0237 |
|
RONG M, HU X F, YANG J Y. Resilience analysis and evaluation of combat system of systems architecture based on dynamic super network[J]. Journal of System Simulation, 2019, 31 (6): 1055- 1061.
doi: 10.16182/j.issn1004731x.joss.19-0237 |
|
| 38 | TRAN H T, DOMERÇANT J C, MAVRIS D N. A system-of-systems approach for assessing the resilience of reconfigurable command and control networks[C]//Proc. of the AIAA SciTech Forum, 2015. |
| 39 |
陈志伟, 王靖, 谷长超, 等. 考虑动态重构的装备体系可用性及弹性分析[J]. 系统工程与电子技术, 2021, 43 (8): 2347- 2354.
doi: 10.12305/j.issn.1001-506X.2021.08.38 |
|
CHEN Z W, WANG J, GU C C, et al. Performance availability and resilience analysis of weapon system of systems considering dynamic reconfiguration[J]. Systems Engineering and Electronics, 2021, 43 (8): 2347- 2354.
doi: 10.12305/j.issn.1001-506X.2021.08.38 |
|
| 40 |
石建伟, 刘俊先, 姜志平, 等. 基于超网络的军事体系韧性评估[J]. 指挥与控制学报, 2017, 3 (3): 213- 217.
doi: 10.3969/j.issn.2096-0204.2017.03.0213 |
|
SHI J W, LIU J X, JIANG Z P, et al. Evaluating military system of systems resilience using super networks[J]. Journal of Command and Control, 2017, 3 (3): 213- 217.
doi: 10.3969/j.issn.2096-0204.2017.03.0213 |
|
| 41 |
谭跃进, 张小可, 杨克巍. 武器装备体系网络化描述与建模方法[J]. 系统管理学报, 2012, 21 (6): 781- 786.
doi: 10.3969/j.issn.1005-2542.2012.06.009 |
|
TAN Y J, ZHANG X K, YANG K W. Research on networked description and modeling methods of armament system-of-systems[J]. Journal of Systems and Management, 2012, 21 (6): 781- 786.
doi: 10.3969/j.issn.1005-2542.2012.06.009 |
|
| 42 | CARES J R. Distributed networked operations the foundations of network centric warfare[M]. Newport: Alidade Press, 2004. |
| 43 | DELLER S, BELL M I, BOWLING S R, et al. Applying the information age combat model: quantitative analysis of network cenctric operations[J]. The International C2 Journal, 2009, 3 (1): 24- 26. |
| 44 | 周琛, 尚柏林, 宋笔锋, 等. 基于作战环的航空武器装备体系贡献率评估[J]. 航空学报, 2022, 43 (2): 314- 325. |
| ZHOU C, SHANG B L, SONG B F, et al. Contribution evaluation of aviation armament system-of-systems based on operation loop[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (2): 314- 325. | |
| 45 |
周琛, 宋笔锋, 尚柏林, 等. 基于作战网络可靠度的体系贡献率评估[J]. 系统工程与电子技术, 2021, 43 (7): 1875- 1883.
doi: 10.12305/j.issn.1001-506X.2021.07.19 |
|
ZHOU C, SONG B F, SHANG B L, et al. System of systems contribution rate evaluation based on operational network reliability[J]. Systems Engineering and Electronics, 2021, 43 (7): 1875- 1883.
doi: 10.12305/j.issn.1001-506X.2021.07.19 |
|
| 46 | LI J C, FU C, CHEN Y, et al. An operational efficiency evaluation method for weapon system-of-systems combat networks based on operation loop[C]//Proc. of the IEEE International Conference on System of Systems Engineering, 2014: 219−223. |
| 47 |
LI J C, JIANG J Y, YANG K W, et al. Research on functional robustness of heterogeneous combat networks[J]. IEEE Systems Journal, 2019, 13 (2): 1487- 1495.
doi: 10.1109/JSYST.2018.2828779 |
| 48 | 魏东涛, 刘晓东, 李鹏, 等. 基于节点重要度与改进信息熵的装备体系效能评估方法研究[J]. 系统工程与电子技术, 2021, 43(12): 3614−3623. |
| WEI D T, LIU X D, LI P , et al. Research on effectiveness evaluation method of equipment system based on node importance and improved information entropy[J]. Systems Engineering and Electronics, 2021, 43(12): 3614−3623. | |
| 49 |
PAN X, WANG H X, YANG Y J, et al. Resilience based importance measure analysis for SoS[J]. Journal of Systems Engineering and Electronics, 2019, 30 (5): 920- 930.
doi: 10.21629/JSEE.2019.05.10 |
| 50 | JIANG J Y, LI J C, XIA B Y, et al. Modeling and resilience analysis of combat systems-of-systems based on kill web[C]//Proc. of the 17th Annual System of Systems Engineering Conference, 2022: 28−35. |
| 51 | SUN Q, LI H X, WANG Y Z, et al. Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems[J]. Reliability Engineering & System Safety, 2022, 222, 108426. |
| 52 | ARIEL P C, PAUL R. Advanced risk analysis in engineering enterprise systems[M]. Boca Raton: CRC Press, 2012. |
| 53 | INTO C A, PAUL R G. Advanced risk analysis in engineering enterprise systems[M]. Boca Raton: CRC Press, 2009. |
| 54 | 陈宽, 李元元, 罗云峰, 等. 基于功能依赖网络的体系韧性分析[J]. 指挥与控制学报, 2016, 2 (3): 256- 260. |
| CHEN K, LI Y Y, LUO Y F, et al. Evaluating system of systems resilience based on functional dependency network analysis[J]. Journal of Command and Control, 2016, 2 (3): 256- 260. | |
| 55 | 李诗阳. 基于功能依赖网络的体系韧性量化分析与评估[D]. 武汉: 华中科技大学, 2021. |
| LI S Y. Quantitative analysis and evaluation of system-of-systems resilience based on functional dependency network analysis[D]. Wuhan: Huazhong University of Science and Technology, 2021. | |
| 56 | 舒佳康. 基于权衡空间探索的体系韧性分析[D]. 武汉: 华中科技大学, 2019. |
| SHU J K. Evaluation of system-of-systems resilience based on tradespace exploration [D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
| 57 |
GUARINIELLO C, DELAURENTIS D. Dependency analysis of system-of-systems operational and development networks[J]. Procedia Computer Science, 2013, 16, 265- 274.
doi: 10.1016/j.procs.2013.01.028 |
| 58 | FILIPPINI R, SILVA A. Resilience analysis of networked systems-of-systems based on structural and dynamic interdependencies[C]//Proc. of the 11th International Probabilistic Safety Assessment and Management Conference and the Annual European Safety and Reliability Conference, 2012. |
| 59 | Chief Information Office. The Department of Defense Architecture Framework (DoDAF) Version 2.0[R]. Washington D.C.: Chief Information Office, 2009. |
| 60 | Chief Information Office. The Department of Defense Architecture Framework (DoDAF ) Version 1.0[R]. Washington D.C.: 2003. |
| 61 |
ACHESON P, DAGLI C. Modeling resilience in system of systems architecture[J]. Procedia Computer Science, 2016, 95, 111- 118.
doi: 10.1016/j.procs.2016.09.300 |
| 62 | JNITOVA V, EFTAMNESHNIK M, JOINER K F, et al. Improving enterprise resilience by evaluating training system architecture: method selection for Australian defense[M]// Hoboken: wiley, 2020. |
| 63 | 赵华, 陈英武. 基于自然连通度的武器装备体系生存能力评估方法[C]//中国系统工程学会决策科学专业委员会第八届学术年会, 2009. |
| ZHAO H, CHEN Y W. A method for evaluating survivability of weapon system-of-systems based on natural connectivity[C]//Proc. of the 8th Annual Academic Conference of the Decision Science Professional Committee of the Chinese Society of Systems Engineering, 2009. | |
| 64 |
任天助, 辛万青, 严晞隽, 等. 体系能力多维度评估建模方法[J]. 系统工程学报, 2021, 36 (5): 709- 720.
doi: 10.13383/j.cnki.jse.2021.05.011 |
|
REN T Z, XIN W Q, YAN X J, et al. Modeling method for multi-dimensional evaluation of system-of-systems capability[J]. Journal of System Engineering, 2021, 36 (5): 709- 720.
doi: 10.13383/j.cnki.jse.2021.05.011 |
|
| 65 | FRANCIS R A. Simulation-based analysis of reconfigurable system of system network topologies for resilience using Bayesian networks[C]//Proc. of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering, 2015. |
| 66 |
王哲, 李建华. 网络信息体系弹性及其建模分析[J]. 军事运筹与系统工程, 2020, 34 (1): 54- 60.
doi: 10.3969/j.issn.1672-8211.2020.01.010 |
|
WANG Z, LI J H. The resilience and modeling analysis of networked information system of system[J]. Military Operations Research and Systems Engineering, 2020, 34 (1): 54- 60.
doi: 10.3969/j.issn.1672-8211.2020.01.010 |
|
| 67 | MADNI A M, SIEVERS M, ERWIN D. Formal and probabilistic modeling in design of resilient systems and system-of-systems[C]//Proc. of the AIAA Scitech 2019 Forum, 2019. |
| 68 |
罗鹏程, 傅攀峰, 周经伦. 武器装备体系能力评估框架[J]. 系统工程与电子技术, 2005, 27 (1): 72- 75.
doi: 10.3321/j.issn:1001-506X.2005.01.021 |
|
LUO P C, FU P F, ZHOU J L, et al. Framework to evaluate the combat capability of weapons SoS[J]. Systems Engineering and Electronics, 2005, 27 (1): 72- 75.
doi: 10.3321/j.issn:1001-506X.2005.01.021 |
|
| 69 |
PFIANZ M, LEVIS A. An approach to evaluating resilience in command and control architectures[J]. Procedia Computer Science, 2012, 8, 141- 146.
doi: 10.1016/j.procs.2012.01.030 |
| 70 |
丁峰, 周芳, 程文迪, 等. 面向任务保障的指挥信息系统韧性能力定量化评估[J]. 指挥信息系统与技术, 2018, 9 (6): 13- 18.
doi: 10.15908/j.cnki.cist.2018.06.003 |
|
DING F, ZHOU F, CHEN W D, et al. Mission-assurance-oriented resilient capability quantitative evaluation of command information system[J]. Command Information System and Technology, 2018, 9 (6): 13- 18.
doi: 10.15908/j.cnki.cist.2018.06.003 |
|
| 71 |
崔琼, 李建华. 网络化指挥信息系统弹性度量方法[J]. 军事运筹与系统工程, 2016, 30 (4): 18- 24.
doi: 10.3969/j.issn.1672-8211.2016.04.003 |
|
CUI Q, LI J H. Resilience assessment method for networked command and control information system[J]. Military Operations Research and Assessment, 2016, 30 (4): 18- 24.
doi: 10.3969/j.issn.1672-8211.2016.04.003 |
|
| 72 | DREESBEIMDIEK K M, VONBEHR C M, BRAYNE C, et al. Towards a contemporary design framework for systems-of-systems resilience[C]// Proc. of the Design Society, 2022, 2: 1835−1844. |
| 73 | 陶智刚, 徐浩, 易侃, 等. 基于权衡空间探索分析的 C4ISR 系统韧性研究[C]//中国指挥与控制大会, 2016: 110−115. |
| TAO Z G, XU H, YI K, et al. C4ISR system resilience research based on tradespace exploration analysis[C]//Proc. of the 4th China Conference on Command and Control, 2016: 110−115. | |
| 74 | 寇雨筱. 指挥信息系统韧性评估与设计方法研究[D]. 长沙: 国防科技大学, 2019. |
| KOU Y X. Study on resilience evaluation and design of command information system[D]. Changsha: National University of Defense Technology, 2019. | |
| 75 |
CHENG C C, BAI G H, ZHANG Y A, et al. Resilience evaluation for UAV swarm performing joint reconnaissance mission[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29 (5): 053132.
doi: 10.1063/1.5086222 |
| 76 | 杨博帆, 张琳, 张搏. 一种新型军事装备系统弹性混合度量方法[J]. 军事运筹与系统工程, 2021, 35 (1): 51- 56. |
| YANG B F, ZHANG L, ZHANG B, et al. A new hybrid measurement method of military equipment system resilience[J]. Military Operations Research and Assessment, 2021, 35 (1): 51- 56. | |
| 77 |
LIU T, BAI G H, TAO J, et al. Modeling and evaluation method for resilience analysis of multi-state networks[J]. Reliability Engineering and System Safety, 2022, 226, 108663.
doi: 10.1016/j.ress.2022.108663 |
| 78 |
李森, 王亮, 陈刚, 等. 基于目标流驱动的作战体系动态同步分析方法[J]. 系统工程理论与实践, 2022, 42 (1): 241- 252.
doi: 10.12011/SETP2019-2739 |
|
LI S, WANG L, CHEN G, et al. Dynamic synchronization analysis method of operation system-of-systems based on target stream drive[J]. Systems Engineering Theory and Practice, 2022, 42 (1): 241- 252.
doi: 10.12011/SETP2019-2739 |
|
| 79 | RAINEY L B, TOLK A. Modeling and simulation support for system of systems engineering applications[M]. New Jersey: Wiley, 2015. |
| 80 | 毕义明, 刘良, 刘伟, 等. 军事建模与仿真[M]. 北京: 国防工业出版社, 2017. |
| BI Y M, LIU L, LIU W, et al. Military modeling and simulation [M]. Beijing: National Defense Industry Press, 2017. | |
| 81 | MARCEAU C, HANNA J, MCCULLOUGH D, et al. A peer-to-peer architecture for secure data storage with query[C]// Proc. of the SPIE, 2005. |
| 82 | MJELDE F V, SMITH K, LUNDE P, et al. Military teams – a demand for resilience[J]. Work, 2016, 54 (2): 283- 294. |
| 83 |
SPECKING E, COTTAM B, PARNELL G, et al. Assessing engineering resilience for systems with multiple performance measures[J]. Risk Analysis, 2019, 39 (9): 1899- 1912.
doi: 10.1111/risa.13395 |
| 84 | NGUYEN T M, LEE C, FREEZE T, et al. Systems-of-systems enterprise architecture CONOPS assessment approach and preliminary results[C]//Proc. of the International Society for Optical Engineering, 2020. |
| 85 | 李艳军. 基于信息交互的无人机集群建模与韧性评估[D]. 长沙: 国防科技大学, 2018. |
| LI Y J. Resilience of UAV Swarm based on information exchange: models and evaluation methods[D]. Changsha: National University of Defense Technology, 2018. | |
| 86 | 魏晨曦. 从“施里弗”系列演习看未来太空作战的发展[J]. 国际太空, 2016, (6): 29- 36. |
| WEI C X. Development trend of space operations from schriever wargame[J]. Space International, 2016, (6): 29- 36. | |
| 87 |
陈亚飞, 汤亚锋. 兵棋推演与美国天军兵力设计[J]. 国际太空, 2021, (9): 49- 54.
doi: 10.3969/j.issn.1009-2366.2021.09.011 |
|
CHEN Y F, TANG Y F. Wargame and the military force design of the US Army[J]. Space International, 2021, (9): 49- 54.
doi: 10.3969/j.issn.1009-2366.2021.09.011 |
|
| 88 | ORMROD D, SCOTT K. Strategic foresight and resilience through cyber-wargaming[C]//. Proc. of the European Conference on Information Warfare and Security, 2019. |
| 89 | WOJTOWICZ N. Resilience against intentional shocks: a wargaming study of the relation between space, action and the residing population to resilience[J]. Eastern Journal of European Studies, 2020, 11 (1): 5- 26. |
| 90 | LANTTO H, KUKKOLA J, AKESSON B, et al. Wargaming a closed national network[C]// Proc. of the IEEE Military Communications Conference, 2019. |
| 91 | IRSHAD L, HULSE D. Resilience modeling in complex engineered systems with human-machine interactions[C]//Proc. of the ASME Design Engineering Technical Conference, 2022. |
| 92 | FILIPPI G, VASILE M. Evidence-based resilience engineering of dynamic space systems[C]//Proc. of the 70th International Astronautical Congress, 2019. |
| 93 |
SRIRAM L M K, ULAK M B, OZGUVEN E E, et al. Multi-network vulnerability causal model for infrastructure co-resilience[J]. IEEE Access, 2019, 7, 35344- 35358.
doi: 10.1109/ACCESS.2019.2904457 |
| 94 |
聂俊峰, 陈行军, 史红权. 面向任务驱动的海上编队云作战体系动态超网络模型[J]. 兵工学报, 2021, 42 (11): 2513- 2521.
doi: 10.3969/j.issn.1000-1093.2021.11.024 |
|
NIE J F, CHEN X J, SHI H Q. Dynamic super-network model of task-oriented naval fleet “Cloud Combat” system[J]. Acta Armamentarii, 2021, 42 (11): 2513- 2521.
doi: 10.3969/j.issn.1000-1093.2021.11.024 |
|
| 95 |
刘思峰. 灰色系统理论的发展及其在自然科学和工程技术领域的广泛应用[J]. 南京航空航天大学学报, 2022, 54 (5): 851- 866.
doi: 10.16356/j.1005?2615.2022.05.011 |
|
LIU S F. Development of grey system theory and its wide application in natural science and engineering technology[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54 (5): 851- 866.
doi: 10.16356/j.1005?2615.2022.05.011 |
|
| 96 |
陶良彦, 王丽, 齐晓霞, 等. 武器装备体系贡献率评估灰色Shapley值模型[J]. 中国管理科学, 2024, 32 (4): 89- 96.
doi: 10.16381/j.cnki.issn1003-207x.2021.1233 |
|
TAO L Y, WANG L, QI X X, et al. On grey shapley value model for evaluating the contribution rate of weapon equipment system[J]. Chinese Journal of Management Science, 2024, 32 (4): 89- 96.
doi: 10.16381/j.cnki.issn1003-207x.2021.1233 |
|
| 97 |
WANG Z, LIU S F, FANG Z G. Research on SoS-GERT network model for equipment system of systems contribution evaluation based on joint operation[J]. IEEE Systems Journal, 2020, 14 (3): 4188- 4196.
doi: 10.1109/JSYST.2019.2956549 |
| 98 | 徐任杰, 宫琳, 谢剑. 基于模糊贝叶斯网络的装备体系结构贡献率评估方法[C]// 第四届体系工程学术会议——数字化转型中的体系工程, 2022. |
| XU R J, GONG L, XIE J, et al. Evaluation method of equipment system-of-systems architecture contribution rate based on fuzzy Bayesian network[C]// Proc. of the 4th Academic Conference on System Engineering - System Engineering in Digital Transformation, 2022. | |
| 99 |
FANG Y P, PEDRONI N, ZIO E. Resilience-based component importance measures for critical infrastructure network systems[J]. IEEE Trans. on Reliability, 2016, 65 (2): 502- 512.
doi: 10.1109/TR.2016.2521761 |
| 100 |
潘星, 蒋卓, 杨艳京. 基于弹性的体系组件重要度及恢复策略[J]. 北京航空航天大学学报, 2017, 43 (9): 1713- 1720.
doi: 10.13700/j.bh.1001-5965.2016.0727 |
|
PAN X, JIANG Z, YANG Y J. Resilience-based component importance and recovery strategy for system-of-systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43 (9): 1713- 1720.
doi: 10.13700/j.bh.1001-5965.2016.0727 |
|
| 101 | ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, (8): 338- 353. |
| 102 |
HAN Q, PANG B, LI S, et al. Evaluation method and optimization strategies of resilience for air & space defense system of systems based on kill network theory and improved self-information quantity[J]. Defence Technology, 2023, 21, 219- 239.
doi: 10.1016/j.dt.2023.01.005 |
| 103 |
刘思峰, 唐伟, 谢乃明, 等. 中国原创灰色系统理论的创立、发展与国际传播[J]. 南京航空航天大学学报(社会科学版), 2022, 24 (4): 1- 10.
doi: 10.16297/j.nuaass.202204001 |
|
LIU S F, TANG W, XIE N M. The establishment, development and international communication of chinese original grey system theory[J]. Journal of Nanjing University of Aeronautics and Astronautics (Social Science), 2022, 24 (4): 1- 10.
doi: 10.16297/j.nuaass.202204001 |
|
| 104 |
MO H D, LI Y F, ZIO E. A system-of-systems framework for the reliability analysis of distributed generation systems accounting for the impact of degraded communication networks[J]. Applied Energy, 2016, 183, 805- 822.
doi: 10.1016/j.apenergy.2016.09.041 |
| 105 |
徐鹏程, 路庆昌, 李静, 等. 连续暴雨灾害下道路网络时变韧性建模与分析[J]. 武汉大学学报(工学版), 2024, 57 (11): 1610- 1618.
doi: 10.14188/j.1671-8844.2024-11-011 |
|
XU P C, LU Q C, LI J, et al. Research on modeling and analysis of time-varied resilience of road network under continuous rainstorm disaster[J]. Engineering Journal of Wuhan University (Engineering Edition), 2024, 57 (11): 1610- 1618.
doi: 10.14188/j.1671-8844.2024-11-011 |
|
| 106 |
PARRI J, PATARA F, SAMPIETRO S, et al. A framework for model-driven engineering of resilient software-controlled systems[J]. Computing, 2021, 103 (4): 589- 612.
doi: 10.1007/s00607-020-00841-6 |
| 107 |
THOMPSON J, GANAPATHYSUBRAMANIAN B, CHEN W, et al. Iowa urban FEWS: integrating social and biophysical models for exploration of urban food, energy, and water systems[J]. Frontiers in Big Data, 2021, 4, 662186.
doi: 10.3389/fdata.2021.662186 |
| 108 |
荣明, 胡晓峰, 杨镜宇. 基于试验床的作战体系弹性评估研究[J]. 系统仿真学报, 2018, 30 (12): 4711- 4717.
doi: 10.16182/j.issn1004731x.joss.201812027 |
|
RONG M, HU X F, YANG J Y. Research on assessment of operation system’s resilience based on test bed[J]. Journal of System Simulation, 2018, 30 (12): 4711- 4717.
doi: 10.16182/j.issn1004731x.joss.201812027 |
|
| 109 | LIU S, TRIANTIS K P, XU J. Reengineering urban operations management and administration by constructing and using urban hierarchical vulnerability indices: an implication of system of systems and big data[C]//Proc. of the 10th Annual International Systems Conference, 2016. |
| 110 |
LIU D, LI M X, JI Y, et al. Spatial-temporal characteristics analysis of water resource system resilience in irrigation areas based on a support vector machine model optimized by the modified gray wolf algorithm[J]. Journal of Hydrology, 2021, 597, 125758.
doi: 10.1016/j.jhydrol.2020.125758 |
| 111 | 周倩倩. 城市生命线工程防灾韧性度评价[D]. 唐山: 华北理工大学, 2020. |
| ZHOU Q Q. Evaluation of disaster prevention toughness of urban lifeline project[D]. Tangshan: North China University of Science and Technology, 2020. | |
| 112 |
王淑良, 陈辰, 张建华, 等. 基于复杂网络的关联公共交通系统韧性分析[J]. 复杂系统与复杂性科学, 2022, 19 (4): 47- 54.
doi: 10.13306/j.1672-3813.2022.04.007 |
|
WANG S L, CHEN C, ZHANG J H, et al. Resilience analysis of public interdependent transport system based on complex network[J]. Complex Systems and Complexity Science, 2022, 19 (4): 47- 54.
doi: 10.13306/j.1672-3813.2022.04.007 |
|
| 113 |
NOZHATI S, ELLINGWOOD B R, CHONG E K P. Stochastic optimal control methodologies in risk-informed community resilience planning[J]. Structural Safety, 2020, 84, 101920.
doi: 10.1016/j.strusafe.2019.101920 |
| [1] | 刘涛, 白光晗, 陶俊勇, 张云安, 方依宁. 面向任务的复杂系统韧性评估方法[J]. 系统工程与电子技术, 2021, 43(4): 1003-1011. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||