系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (5): 1663-1670.doi: 10.12305/j.issn.1001-506X.2025.05.28

• 制导、导航与控制 • 上一篇    

基于全区间航向误差预测与校正的惯性行人导航算法研究

戴洪德1,*, 于佳炜2, 郑百东1, 张笑宇2, 田密1   

  1. 1. 海军航空大学航空基础学院, 山东 烟台 264001
    2. 海军航空大学岸防兵学院, 山东 烟台 264001
  • 收稿日期:2024-04-02 出版日期:2025-06-11 发布日期:2025-06-18
  • 通讯作者: 戴洪德
  • 作者简介:戴洪德 (1981—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为惯性导航、组合导航、滤波估计
    于佳炜 (1995—), 男, 硕士研究生, 主要研究方向为行人导航、组合导航
    郑百东 (1993—), 男, 讲师, 硕士, 主要研究方向为飞行器综合导航
    张笑宇 (1997—), 男, 助理工程师, 硕士, 主要研究方向为惯性导航、行人导航
    田密 (1993—), 男, 硕士, 主要研究方向为惯性行人导航、惯性视觉导航

Research on inertial pedestrian navigation algorithm based on prediction and correction of heading error through full-interval

Hongde DAI1,*, Jiawei YU2, Baidong ZHENG1, Xiaoyu ZHANG2, Mi TIAN1   

  1. 1. School of Basic Sciences for Aviation, Naval Aviation University, Yantai 264001, China
    2. College of Coastal Defense, Naval Aviation University, Yantai 264001, China
  • Received:2024-04-02 Online:2025-06-11 Published:2025-06-18
  • Contact: Hongde DAI

摘要:

针对惯性行人导航中存在的航向角发散问题, 提出一种基于全区间航向误差预测与校正的算法。利用零速区间内航向稳定的特性计算航向误差, 并结合陀螺仪短期稳定性来预测非零速区间的航向误差。通过卡尔曼滤波对导航误差进行全面校正, 显著提升行人导航的精确度。实验结果显示, 在非闭合凹形路径中, 所提算法的平均导航轨迹误差仅为0.94 m, 相比零速修正算法降低了75.33%, 较仅对零速阶段进行航向误差处理的算法减少了48.91%。在400 m闭合路径测试中, 终点位置误差仅为2.53%, 解算路径最符合实际运动轨迹, 验证了本算法能够显著提高行人导航的精度。

关键词: 惯性行人导航, 零速区间, 非零速区间, 航向误差预测与校正, 卡尔曼滤波

Abstract:

Aiming at the problem of heading angle divergence in inertial pedestrian navigation, an algorithm based on heading error prediction and correction across the entire area is proposed. Using the stable heading characteristics within the zero-velocity interval to calculate heading errors, and combining with the short-term stability of the gyroscope to predict heading errors in non-zero-velocity interval. By using Kalman filtering to comprehensively correct navigation errors, the accuracy of pedestrian navigation is significantly improved. The experimental results show that in non closed concave paths, the average navigation trajectory error of the proposed algorithm is only 0.94 m, which is 75.33% lower than the zero speed correction algorithm and 48.91% lower than the algorithm that only processes heading errors during the zero speed phase. In the 400 m closed path test, the endpoint position error is only 2.53%, and the calculated path best matched the actual motion trajectory, verifying that the proposed algorithm can significantly improve the accuracy of pedestrian navigation.

Key words: inertial pedestrian navigation, zero-velocity interval, non-zero-velocity interval, heading error prediction and correction, Kalman filtering

中图分类号: