1 |
FARAHANIFAR M , ASSADIAN N . Integrated magnetometer-horizon sensor low-Earth orbit determination using UKF[J]. Acta Astronautica, 2015, 106, 13- 23.
doi: 10.1016/j.actaastro.2014.10.007
|
2 |
宁晓琳, 杨雨青, 房建成, 等. 深空探测器自主天文导航研究进展[J]. 深空探测学报(中英文), 2023, 10 (2): 99- 108.
|
|
NING X L , YANG Y Q , FANG J C , et al. The progress of autonomous celestial navigation for deep space spacecraft[J]. Journal of Deep Space Exploration, 2023, 10 (2): 99- 108.
|
3 |
强祺昌, 林宝军, 刘迎春, 等. 深空探测自主导航技术综述[J]. 导航与控制, 2023, 22 (1): 19- 32.
|
|
QIANG Q C , LIN B J , LIU Y C , et al. Review of autonomous navigation technology for deep space exploration[J]. Navigation and Control, 2023, 22 (1): 19- 32.
|
4 |
ZHANG W , YANG Y , YOU W , et al. Autonomous navigation method and technology implementation of high-precision solar spectral velocity measurement[J]. Science China Physics, Mechanics & Astronomy, 2022, 65 (8): 289606.
|
5 |
MITCHELL J W, HASSOUNEH M, WINTERNITZ L, et al. SEXTANT-station explorer for X-ray timing and navigation technology[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference, 2015.
|
6 |
HANSON J E . Principles of X-ray navigation[M]. Palo Alto: Stanford University, 1996.
|
7 |
CHESTER T J, BUTMAN S A. Navigation using X-ray pulsars, NASA technical reports N81-27129[R]. Pasadena: Jet Propulsion Laboratory, 1981.
|
8 |
DOWNS G S. Interplanetary navigation using pulsating radio sources, NASA technical reports N74-34150[R]. Pasadena: Jet Propulsion Laboratory, 1974.
|
9 |
SHEIKH S I , PINES D J , RAY P S , et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance, Control, and Dynamics, 2006, 29 (1): 49- 63.
doi: 10.2514/1.13331
|
10 |
SHEIKH S I , PINES D J , RAY P S , et al. The use of X-ray pulsars for spacecraft navigation[J]. Advances in the Astronautical Science, 2005, 119 (1): 105- 119.
|
11 |
SHEIKH S I . The use of variable celestial X-ray sources for spacecraft navigation[M]. Baltimore: University of Maryland, 2005.
|
12 |
GENDREAU K C, ARZOUMANIAN Z, OKAJIMA T. The Neutron star interior composition explore R(NICER): an explorer mission of opportunity for soft X-ray timing spectroscopy[C]//Proc. of the X-Ray Binary Systems (BeXRB) Workshop, 2012.
|
13 |
郑伟, 王禹淞, 姜坤, 等. X射线脉冲星导航方法研究综述[J]. 航空学报, 2023, 44 (3): 527451.
|
|
ZHENG W , WANG Y S , JIANG K , et al. Overview of X-ray pulsarbased navigation methods[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (3): 527451.
|
14 |
LIU J , MA J , TIAN J W , et al. Pulsar navigation for interplanetary missions using CV model and ASUKF[J]. Aerospace Science and Technology, 2012, 22 (1): 19- 23.
doi: 10.1016/j.ast.2011.04.010
|
15 |
朱新岩, 史忠科. 基于残差特性分析的野值检测与剔除方法[J]. 飞行力学, 2008, 26 (6): 79- 83.
|
|
ZHU X Y , SHI Z K . Outlier detection method based on cha-racteristic analyzing of residue[J]. Flight Dynamics, 2008, 26 (6): 79- 83.
|
16 |
JULIER S J , UHLMANN J K . Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92 (3): 401- 422.
doi: 10.1109/JPROC.2003.823141
|
17 |
NING X L , FANG J C , LIU G , et al. A novel differential Doppler measurement-aided autonomous celestial navigation method for spacecraft during approach phase[J]. IEEE Trans.on Aerospace and Electronic Systems, 2017, 53 (2): 587- 597.
doi: 10.1109/TAES.2017.2651558
|
18 |
黄舒颖. 面向深空探测的太阳光差分测速精度分析及导航光谱选择[D]. 长沙: 湖南大学, 2022.
|
|
HUANG S Y. Solar difference velocimetry accuracy analysis and navigation spectrum selection for deep space exploration[D]. Changsha: Hunan University, 2022.
|
19 |
FANG C , HIEI E , OKAMOTO T . CaⅡ K line asymmetries in two well-observed solar flares of october 18, 1990[J]. Solar Physics, 1991, 135 (1): 89- 97.
doi: 10.1007/BF00146700
|
20 |
ICHIMOTO K , KUROKAWA H . Hα red asymmetry of solar flares[J]. Solar Physics, 1984, 93 (1): 105- 121.
doi: 10.1007/BF00156656
|
21 |
HUANG S Y , KANG Z W , LIU J , et al. Accuracy analysis of spectral velocimetry for the solar Doppler difference navigation[J]. IEEE Access, 2021, 9, 78075- 78082.
doi: 10.1109/ACCESS.2021.3079500
|
22 |
CHEN X , SUN Z W , ZHANG W , et al. A novel autonomous celestial integrated navigation for deep space exploration based on angle and stellar spectra shift velocity measurement[J]. Sensors, 2019, 19 (11): 2555.
doi: 10.3390/s19112555
|
23 |
GREC G , FOSSAT E , POMERANTZ M . Solar oscillations: full disk observations from the geographic south pole[J]. Nature, 1980, 288 (5791): 541- 544.
doi: 10.1038/288541a0
|
24 |
YIM J R. Autonomous spacecraft orbit navigation[D]. Texas: Texas A&M University, 2002.
|
25 |
YE W , LIU Z C , LI C , et al. Enhanced Kalman filter using noisy input Gaussian process regression for bridging GPS outages in a POS[J]. Journal of Navigation, 2018, 71 (3): 565- 584.
doi: 10.1017/S0373463317000819
|
26 |
QUAN W , FANG J C , XU F , et al. Hybrid simulation system study of SINS/CNS integrated navigation[J]. IEEE Aerospace and Electronic Systems Magazine, 2008, 23 (2): 17- 24.
doi: 10.1109/MAES.2008.4460727
|
27 |
MA X , NING X L , FANG J C . Analysis of orbital dynamic equation in navigation for a Mars gravity-assist mission[J]. Journal of Navigation, 2012, 65 (3): 531- 548.
doi: 10.1017/S0373463312000100
|
28 |
NING X L , LI Z , YANG Y Q , et al. Analysis of ephemeris errors in autonomous celestial navigation during Mars approach phase[J]. Journal of Navigation, 2017, 70 (3): 505- 526.
doi: 10.1017/S0373463316000734
|
29 |
YIM J R, CRASSIDIS J L, JUNKINS J L. Autonomous orbit navigation of interplanetary spacecraft[C]//Proc. of the AIAA/AAS Astrodynamics Specialist Conference, 2000.
|
30 |
荆蕾, 孙炜玮, 乔玉新, 等. GNSS/SINS组合导航系统的自适应UKF算法[J]. 大地测量与地球动力学, 2023, 43 (3): 255- 258.
|
|
JING L , SUN W W , QIAO Y X , et al. Adaptive UKF algorithm for GNSS/SINS integrated navigation system[J]. Journal of Geodesy and Geodynamics, 2023, 43 (3): 255- 258.
|