系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (5): 1421-1431.doi: 10.12305/j.issn.1001-506X.2025.05.05

• 电子技术 • 上一篇    

跨尺度特征融合的遥感微小目标检测算法

邵凯1,2,3,*, 李浩刚1, 梁燕1, 宁婧1, 陈戊1   

  1. 1. 重庆邮电大学通信与信息工程学院, 重庆 400065
    2. 重庆邮电大学移动通信技术重庆市重点实验室, 重庆 400065
    3. 重庆邮电大学移动通信教育部工程研究中心, 重庆 400065
  • 收稿日期:2024-05-09 出版日期:2025-06-11 发布日期:2025-06-18
  • 通讯作者: 邵凯
  • 作者简介:邵凯(1977—), 男, 副教授, 硕士, 主要研究方向为智能感知与信息系统、信号与信息智能处理
    李浩刚(2000—), 男, 硕士研究生, 主要研究方向为计算机视觉、遥感图像目标检测
    梁燕(1977—), 女, 高级工程师, 硕士, 主要研究方向为计算机视觉、物联网AI
    宁婧(2003—), 女, 主要研究方向为计算机视觉
    陈戊(2003—), 女, 主要研究方向为计算机视觉

Remote sensing small target detection algorithm based on cross-scale feature fusion

Kai SHAO1,2,3,*, Haogang LI1, Yan LIANG1, Jing NING1, Wu CHEN1   

  1. 1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    2. Chongqing Key Laboratory of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    3. Engineering Research Center of Mobile Communications of the Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Received:2024-05-09 Online:2025-06-11 Published:2025-06-18
  • Contact: Kai SHAO

摘要:

针对遥感图像微小目标检测中存在的浅层细化特征、深层语义表征和多尺度信息提取3个问题, 提出一种综合运用多项技术的跨尺度YOLOv7 (cross-scale YOLOv7, CSYOLOv7)网络。首先, 设计跨阶段特征提取模块(cross-stage feature extraction module, CFEM)和感受野特征增强模块(receptive field feature enhancement module, RFFEM)。CFEM提高模型细化特征提取能力并抑制浅层下采样过程中特征的丢失, RFFEM加大网络对深层语义特征的提取力度, 增强模型对目标上下文信息获取能力。其次, 设计跨梯度空间金字塔池化模块(cross-gradient space pyramid pool module, CSPPM)有效融合微小目标多尺度的全局和局部特征。最后,用形状感知交并比(shape-aware intersection over union, Shape IoU)替换完全交并比(complete intersection over union, CIoU),提高模型在边界框定位任务中的精确度。实验结果表明,CSYOLOv7网络在DIOR(dataset for image object recognition)数据集和NWPU VHR-10(Northwestern Polytechnical University Very High Resolution-10)数据集上分别取得了74%和89.6%的检测精度,有效提升遥感图像微小目标的检测效果。

关键词: 遥感图像, 微小目标, 特征提取, 上下文信息

Abstract:

For three problems of shallow thinning features, deep semantic representation and multi-scale information extraction for the detection of small targets in remote sensing images, a cross-scale YOLOv7(CSYOLOv7) network by comprehensively applying multiple technologies is proposed. Firstly, a cross-stage feature extraction module (CFEM) and a receptive field feature enhancement module (RFFEM) are designed. CFEM is to improve the model's ability of refining feature extraction and suppress the loss of features during shallow down-sampling. RFFEM is to increase the network's ability of extracting deep semantic features and improve the model's ability of acquiring target context information. Secondly, a cross-gradient space pyramid pool module (CSPPM) is designed to effectively fuse global multi-scale and local features of small targets. Finally, shape intersection over union (Shape IoU) is used to replace the complete intersection over union (CIoU) to improve the accuracy of the model in the bounding box positioning task. Experimental results show that the CSYOLOv7 network achieves detection accuracy of 74% and 89.6% on the Dataset for Image Object Recognition (DIOR) data set and Northwestern Polytechnical University Very High Resolution-10 (NWPU VHR-10) data set respectively, which effectively improves the detection effect of small targets in remote sensing images.

Key words: remote sensing image, small target, feature extraction, context information

中图分类号: