1 |
成倩, 李佳, 杜娟. 基于YOLOv5的光学遥感图像舰船目标检测算法[J]. 系统工程与电子技术, 2023, 45 (5): 1270- 1276.
doi: 10.12305/j.issn.1001-506X.2023.05.02
|
|
CHENG Q , LI J , DU J . Ship target detection algorithm in optical remote sensing images based on YOLOv5[J]. Systems Engineering and Electronics, 2023, 45 (5): 1270- 1276.
doi: 10.12305/j.issn.1001-506X.2023.05.02
|
2 |
宋存利, 柴伟琴, 张雪松. 基于改进YOLO v5算法的道路小目标检测[J]. 系统工程与电子技术, 2024, 46 (10): 3271- 3278.
doi: 10.12305/j.issn.1001-506X.2024.10.04
|
|
SONG C L , CHAI W Q , ZHANG X S . Road small target detection based on improved YOLO v5 algorithm[J]. Systems Engineering and Electronics, 2024, 46 (10): 3271- 3278.
doi: 10.12305/j.issn.1001-506X.2024.10.04
|
3 |
XU J, FU K, SUN X. An invariant generalized Hough transform based method of inshore ships detection[C]//Proc. of the International Symposium on Image and Data Fusion, 2011.
|
4 |
TAO C , TAN Y H , CAI H J , et al. Airport detection from large IKONOS images using clustered SIFT keypoints and region information[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 8 (1): 128- 132.
|
5 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
6 |
JIAO Y H, XING L. Vehicle target detection research based on enhanced YOLOv8[C]//Proc. of the 4th International Confe-rence on Neural Networks, Information and Communication, 2024: 1427-1432.
|
7 |
IRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
|
8 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2016, 39 (6): 1137- 1149.
|
9 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]// Proc. of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
|
10 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
11 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc. of the 14th European Conference, 2016: 21-37.
|
12 |
LI C Y , CONG R M , GUO C L , et al. A parallel down-up fusion network for salient object detection in optical remote sensing images[J]. Neurocomputing, 2020, 415, 411- 420.
doi: 10.1016/j.neucom.2020.05.108
|
13 |
韩子硕, 范喜全, 付强, 等. 面向无人机视角的多源信息融合目标检测[J]. 系统工程与电子技术, 2025, 47 (1): 52- 61.
|
|
HAN Z S , FAN X Q , FU Q , et al. Multi-source information fusion target detection from the perspective of drones[J]. Systems Engineering and Electronics, 2025, 47 (1): 52- 61.
|
14 |
ZHAO C A , GUO D D , SHAO C F , et al. SatDetX-YOLO: a more accurate method for vehicle target detection in satellite remote sensing imagery[J]. IEEE Access, 2024, 12, 46024- 46041.
doi: 10.1109/ACCESS.2024.3382245
|
15 |
QU J S , SU C , ZHANG Z W , et al. Dilated convolution and feature fusion SSD network for small object detection in remote sensing images[J]. IEEE Access, 2020, 8, 82832- 82843.
doi: 10.1109/ACCESS.2020.2991439
|
16 |
CHEN H B , JIANG S , HE G H , et al. TEANS: a target enhancement and attenuated nonmaximum suppression object detector for remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18 (4): 632- 636.
|
17 |
ULTRALYTICS. YOLOv5[EB/OL]. [2024-04-20]. https://github.com/ultralytics/YOLOv5, 2021.
|
18 |
WANG C Y, YEH I H, MARK LIAO H Y. Yolov9: learning what you want to learn using programmable gradient information[C]//Proc. of the European Conference on Computer Vision, 2024.
|
19 |
DONG Z , LIN B J . BMF-CNN: an object detection method based on multi-scale feature fusion in VHR remote sensing images[J]. Remote Sensing Letters, 2020, 11 (3): 215- 224.
doi: 10.1080/2150704X.2019.1706007
|
20 |
SHEN L Y , LANG B H , SONG Z X . DS-YOLOv8-based object detection method for remote sensing images[J]. IEEE Access, 2023, 11, 125122- 125137.
doi: 10.1109/ACCESS.2023.3330844
|
21 |
HE M , QIN L , DENG X L , et al. MFI-YOLO: multi-fault insulator detection based on an improved YOLOv8[J]. IEEE Trans.on Power Delivery, 2023, 39 (1): 168- 179.
|
22 |
ZHANG S Z, TUO H Y, HU J, et al. Domain adaptive YOLO for one-stage cross-domain detection[C]//Proc. of the Asian Conference on Machine Learning, 2021: 785-797.
|
23 |
邵凯, 王明政, 王光宇. 基于Transformer的多尺度遥感语义分割网络[J]. 智能系统学报, 2024, 19 (4): 920- 929.
|
|
SHAO K , WANG M Z , WANG G Y . Multi-scale remote sensing semantic segmentation network based on Transformer[J]. Journal of Intelligent Systems, 2024, 19 (4): 920- 929.
|
24 |
梁燕, 易春霞, 王光宇. 基于编解码网络UNet3+的遥感影像建筑变化检测[J]. 计算机学报, 2023, 46 (8): 1720- 1733.
|
|
LIANG Y , YI C X , WANG G Y . Building change detection in remote sensing images based on encoding and decoding network UNet3+[J]. Journal of Computer Science, 2023, 46 (8): 1720- 1733.
|
25 |
HE K M , ZHANG X Y , REN S Q , et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916.
doi: 10.1109/TPAMI.2015.2389824
|
26 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2023: 7464-7475.
|
27 |
ZHANG H, ZHANG S J. Shape-IoU: more accurate metric considering bounding box shape and scale[EB/OL]. [2024-04-20]. http://arXivpreprintarXiv:2312.17663, 2023.
|
28 |
梁燕, 易春霞, 王光宇, 等. 基于多尺度语义编解码网络的遥感图像语义分割[J]. 电子学报, 2023, 51 (11): 3199- 3214.
|
|
LIANG Y , YI C X , WANG G Y , et al. Semantic segmentation of remote sensing images based on multi-scale semantic encoding and decoding network[J]. Journal of Electronics, 2023, 51 (11): 3199- 3214.
|
29 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
|
30 |
ZHANG X, LIU C, YANG D G, et al. Rfaconv: innovating spatital attention and standard convolutional operation[EB/OL]. [2024-04-20]. https://arXivpreprintarXiv:2304.03198, 2023.
|
31 |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
|
32 |
SALMAN H, PARKS C, SWAN M, et al. OrthoNets: orthogonal channel attention networks[C]//Proc. of the IEEE International Conference on Big Data, 2023: 829-837.
|
33 |
CHRISTLEIN V, SPRANGER L, SEURET M, et al. Deep generalized max pooling[C]//Proc. of the International Conference on Document Analysis and Recognition, 2019: 1090-1096.
|
34 |
CHEN Y M , YUAN X B , WANG J B , et al. YOLO-MS: rethinking multi-scale representation learning for real-time object detection[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2025, 3538473.
|
35 |
LI K , WAN G , CHENG G , et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159, 296- 307.
doi: 10.1016/j.isprsjprs.2019.11.023
|
36 |
CHENG G , HAN J W . A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117, 11- 28.
doi: 10.1016/j.isprsjprs.2016.03.014
|
37 |
GE Z, LIU S T, WANG F, et al. Yolox: exceeding yolo series in 2021[EB/OL]. [2024-04-20]. https://arxiv.org/abs/2107.08430.
|
38 |
ZHAO Y A, LV W Y, XU S L, et al. Detrs beat yolos on real-time object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 16965-16974.
|
39 |
ULTRALYTICS. YOLOv8[EB/OL]. [2024-04-20]. https://github.com/ultralytics/ultralytics, 2023.
|