系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (4): 1374-1383.doi: 10.12305/j.issn.1001-506X.2025.04.34

• 通信与网络 • 上一篇    

面向资源异构的通信高效去中心化联邦学习

潘沭伽, 陈思光   

  1. 南京邮电大学物联网学院, 江苏 南京 210003
  • 收稿日期:2023-11-03 出版日期:2025-04-25 发布日期:2025-05-28
  • 通讯作者: 陈思光
  • 作者简介:潘沭伽 (2000—), 男, 硕士研究生, 主要研究方向为联邦学习、边缘智能
    陈思光 (1984—), 男, 教授, 博士, 主要研究方向为边缘智能与安全
  • 基金资助:
    国家自然科学基金(61971235);江苏省“333高层次人才培养工程”;南京邮电大学“1311”人才计划

Communication-efficient decentralized federated learning with resource heterogeneity

Shujia PAN, Siguang CHEN   

  1. School of Internet of Things, Nanjing University of Post and Telecommunications, Nanjing 210003, China
  • Received:2023-11-03 Online:2025-04-25 Published:2025-05-28
  • Contact: Siguang CHEN

摘要:

为缓解去中心化联邦学习中不同终端节点数据异构带来的负面影响, 在提升系统异步兼容性的同时降低整体通信开销, 提出一种基于掩码位置图的去中心化联邦学习算法。具体地, 设计一种不对称的掩码更新方案。通过逐渐提升稀疏度, 将掩码范数与训练程度绑定, 同时使用可信任的稀疏联邦聚合, 在有效利用稀疏梯度的同时保障系统的安全性。其次, 设计动态掩码社区分割算法, 将梯度掩码与社区分割结合, 可有效利用全网梯度之间的相似性, 主动选择相似聚合目标, 提升模型性能。进一步, 在网络结构上将模型层与掩码层分离, 可降低算力异构对系统可拓展性的影响。最后, 设计一种单线程、可同时模拟数据异构、算力异构与终端节点异步的实验方案。实验结果表明, 与现有相关方法相比, 所提算法在两种数据集与严苛异步条件设置下均可维持高准确率, 并且将通信开销降低了14%~21%。

关键词: 边缘计算, 联邦学习, 去中心化系统, 稀疏训练

Abstract:

In order to alleviate the negative impact caused by data heterogeneity of different terminal nodes in decentralized federation learning, and to enhance asynchronous compatibility while reducing the overall communication overhead, a decentralized federated learning algorithm based on mask location graph is proposed. Specifically, an asymmetric mask updating scheme is designed, which binds the mask norm to the training degree by gradually increasing the sparsity. It can effectively utilize the sparse gradient and guarantee system security while using trusted sparse federated aggregation. Secondly, a dynamic mask community segmentation algorithm is designed to combine gradient mask with community segmentation, which can effectively utilize the similarity between gradients across the entire network, while actively selecting similar aggregation targets and improving model performance. Furthermore, separating the model layer from the mask layer in the network structure can reduce the impact of arithmetic heterogeneity on the system scalability. Finally, a single-threaded based experimental scheme is developed to simulate data heterogeneity, computility heterogeneity and terminal node asynchrony simultaneously. Experimental results show that compared with existing relevant methods, the proposed algorithm maintains high accuracy in both two datasets and strict asynchronous condition settings, and reduces communication overhead by 14%~21%.

Key words: edge computing, federated learning, decentralized system, sparse training

中图分类号: