1 |
European Space Agency Space Debris Office. ESA’s annual space environment report[R]. Darmstadt: European Space Agency, 2024.
|
2 |
Space Forces-Space. The satellite situation report[EB/OL]. [2024-08-01]. https: //www.space-track.org/#ssr.
|
3 |
ROSSI A, ANSELMO L, PARDINI C, et al. The new space debris mitigation (SDM 4.0) long term evolution code[C]//Proc. of the 5th European Conference on Space Debris, 2009.
|
4 |
DOLADO-PEREZ J C, DI-COSTANZO R, REVELIN B. Introducing MEDEE-a new orbital debris evolutionary model[C]//Proc. of the 6th European Conference on Space Debris, 2013.
|
5 |
BENDISCH J, WEGENER P, REX D. The long-term evolution of debris orbits in view of spatial object accumulation[C]//Proc. of the 2nd European Conference on Space Debris, 1997.
|
6 |
WALKER R, MARTIN C E, STOKES P H, et al. Analysis of the effectiveness of space debris mitigation measures using the DELTA model[J]. Advances in Space Research, 2001, 28 (9): 1437- 1445.
doi: 10.1016/S0273-1177(01)00445-8
|
7 |
HARADA R, KAWAMOTO S, HANADA T. Assessments of the impacts of orbital fragmentations using the near-earth orbital debris environment evolutionary model (NEODEEM)[J]. Journal of Space Safety Engineering, 2024, 11 (3): 395- 402.
doi: 10.1016/j.jsse.2024.07.008
|
8 |
LIOU J C, HALL D T, KRISKO P H, et al. LEGEND-a three-dimensional LEO-to-GEO debris evolutionary model[J]. Advances in Space Research, 2004, 34 (5): 981- 986.
doi: 10.1016/j.asr.2003.02.027
|
9 |
LEWIS H G, SWINERD G, WILLIAMS N, et al. DAMAGE: a dedicated GEO debris model framework[C]//Proc. of the 3rd European Conference on Space Debris, 2001.
|
10 |
王大为, 汤靖师, 刘林, 等. 半分析方法在地球卫星100 yr尺度长期预报中的性能评估[J]. 天文学报, 2017, 58 (1): 20- 45.
|
|
WANG D W, TANG J S, LIU L, et al. The assessment of the semi-analytical method in the 100-year orbit prediction of earth satellites[J]. Acta Astronomica Sinica, 2017, 58 (1): 20- 45.
|
11 |
KOZAI Y. The motion of a close earth satellite[J]. The Astronomical Journal, 1959, 64 (8): 367- 377.
|
12 |
刘林. 卫星轨道力学算法[M]. 南京: 南京大学出版社, 2019.
|
|
LIU L. Algorithms for satellite orbital dynamics[M]. Nanjing: Nanjing University Press, 2019.
|
13 |
吴连大, 王昌彬, 童傅. 人造卫星二阶摄动理论的半分析、半数值方法[J]. 天文学报, 1978, 19 (2): 131- 151.
|
|
WU L D, WANG C B, TONG F. A new semi-analytical and semi-numerical method for computation of the second order perturbation of artificial Earth satellites[J]. Acta Astronomica Sinica, 1978, 19 (2): 131- 151.
|
14 |
CEFOLA P J. Equinoctial orbit elements-application to artificial satellite orbits[C]//Proc. of the Astrodynamics Conference, 1972.
|
15 |
CEFOLA P J, FOLCIK Z, DI-COSTANZO R, et al. Revisiting the DSST standalone orbit propagator[C]//Proc. of the Space Flight Mechanics Meeting, 2014.
|
16 |
OBRIEN R T, SANG J Z. Semi-analytic satellite theory using the method of multiple scales[C]//Proc. of the Astrodynamics Specialist Conference and Exhibit, 2004.
|
17 |
WANG Y, LUO X H, XU X J. Long-term evolution and lifetime analysis of geostationary transfer orbits with solar radiation pressure[J]. Acta Astronautica, 2020, 175, 405- 420.
doi: 10.1016/j.actaastro.2020.06.007
|
18 |
LUO X H, WANG Y. Long-term orbital lifetime prediction of highly eccentric orbits: a statistical approach[J]. Journal of Spacecraft and Rockets, 2023, 60 (6): 1712- 1723.
|
19 |
CAZABONNE B, CEFOLA P J. Towards accurate orbit determination using semi-analytical satellite theory[C]//Proc. of the 31st AAS/AIAA Space Flight Mechanics Meeting, 2021.
|
20 |
SUN P, COLOMBO C, TRISOLINI M, et al. Comparison of continuity equation and Gaussian mixture model for long-term density propagation using semi-analytical methods[J]. Celestial Mechanics and Dynamical Astronomy, 2022, 134, 22.
doi: 10.1007/s10569-022-10066-8
|
21 |
KHATRI Y, SCHEERES D J. Near-earth semi-analytical uncertainty propagation toolkit for conjunction analysis[C]//Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2023.
|
22 |
DUTT P, ANILKUMAR A K. Orbit propagation using semi-analytical theory and its applications in space debris field[J]. Astrophysics and Space Science, 2017, 362 (2): 35.
doi: 10.1007/s10509-017-3008-0
|
23 |
LIOU J C, ANILKUMAR A K, VIRGILI B B, et al. Stability of the future LEO environment-an IADC comparison study[C]//Proc. of the 6th European Conference on Space Debris, 2013.
|
24 |
VAN-DER-HA J C. Long-term evolution of near-geostationary orbits[J]. Journal of Guidance, 1986, 9 (3): 363- 370.
doi: 10.2514/3.20115
|
25 |
MORAND V, DOLADO-PEREZ J C, FRAYSSE H, et al. Semi-analytical computation of partial derivatives and transition matrix using STELA software[C]//Proc. of the 6th European Conference on Space Debris, 2013.
|
26 |
XAVIER J R, RAM K S. Prediction of satellite orbits contraction due to diurnally varying oblate atmosphere and altitude-dependent scale height using KS canonical elements[J]. Planetary and Space Science, 2009, 57 (11): 1312- 1320.
doi: 10.1016/j.pss.2009.05.007
|
27 |
WANG X W, LIU J. An introduction to a new space debris evolution model: SOLEM[J]. Advances in Astronomy, 2019, 2019, 2738276.
|
28 |
沈丹. 空间碎片碰撞预警置信度和长期演化建模影响因素研究[D]. 北京: 中国科学院大学, 2020.
|
|
SHEN D. Research on confidence level of space debris collision warning and factors in long-term evolution model[D]. Beijing: University of Chinese Academy of Sciences, 2020.
|
29 |
王晓伟. 空间碎片环境长期演化模型与减缓清除策略分析研究[D]. 北京: 中国科学院大学, 2019.
|
|
WANG X W. Space debris environment long-term evolution model and mitigation and remediation strategies analysis[D]. Beijing: University of Chinese Academy of Sciences, 2019.
|
30 |
JOHNSON N L, KRISKO P H, LIOU J C, et al. NASA’s new breakup model of EVOLVE 4.0[J]. Advances in Space Research, 2001, 28 (9): 1377- 1384.
doi: 10.1016/S0273-1177(01)00423-9
|
31 |
Inter-Agency Space Debris Coordination Committee. IADC report on the status of the space debris environment[EB/OL]. [2024-08-01]. https://www.iadc-home.org/documents_public.
|