1 |
HASEGAWA K, FUKAMI K, MURATA T, et al. Machine-learning based reduced-order modeling for unsteady flows around bluff bodies of various shapes[J]. Theoretical and Computational Fluid Dynamics, 2020, 34 (4): 367- 383.
doi: 10.1007/s00162-020-00528-w
|
2 |
RAHMAN M S, HAZRA S, CHOWDHURY I A. Advancing computational fluid dynamics through machine learning: a review of data-driven innovations and applications[J]. Journal of Fluid Mechanics and Mechanical Design, 2024, 6 (2): 42- 51.
doi: 10.46610/JFMMD.2024.v06i02.005
|
3 |
GIOVANNI S, BOJANA R. Bayesian identi-fication of a projection-based reduced order model for computational fluid dynamics[J]. Computers & Fluids, 2020, 201, 104477.
|
4 |
刘钊, 王沐晨, 李金玖, 等. 基于POD的尾流激励叶片气动力降阶模型[J]. 兵器装备工程学报, 2021, 42 (2): 82- 88.
doi: 10.11809/bqzbgcxb2021.02.015
|
|
LIU Z, WANG M C, LI J J, et al. Aerodyna-mic reduction model of wake excited blade based on POD[J]. Journal of Ordnance Equipment Engineering, 2021, 42 (2): 82- 88.
doi: 10.11809/bqzbgcxb2021.02.015
|
5 |
MA H H, ZHENG X, WANG J P, et al. POD analysis and low-dimensional model based on POD-galerkin for two-dimensional Rayleigh-Benard convection[J]. Journal of Harbin Institute of Technology, 2018, 25 (1): 67- 78.
|
6 |
GU X J, XU C, LIU M, et al. Frequency-domain proper orthogonal decomposition for efficient reconstruction of unsteady flows[J]. Physics of Fluids, 2025, 37(2): 025161.
|
7 |
KERSCHEN G, GOLINVAL J C, VAKAKIS A F, et al. The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview[J]. Nonlinear Dynamics, 2005, 41, 147- 169.
doi: 10.1007/s11071-005-2803-2
|
8 |
闵光云, 姜乃斌. 基于POD方法的燃料棒模态特征及流致振动响应降阶模型研究[J]. 核动力工程, 2024, 45 (4): 142- 149.
|
|
MIN G Y, JIANG N B. Research on modal characteristics and order reduction model of fuel rod induced vibration response based on POD method[J]. Nuclear Power Engineering, 2024, 45 (4): 142- 149.
|
9 |
CAO Y H, ZHU J, LUO Z D, et al. Reduced-order modeling of the upper tropical Pacific Ocean model using proper orthogonal decomposition[J]. Computers & Mathematics with Applications, 2006, 52 (8/9): 1373- 1386.
|
10 |
LI T Y, REN J H, WANG Q, et al. Research on rapid calculation method of ice cloud parameters based on POD-Kriging agent model[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2023, 40 (S1): 1- 12.
|
11 |
EVERSON R, SIROVICH L. Karhunen-Loeve procedure for Gappy data[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 1995, 12 (8): 1657- 1664.
doi: 10.1364/JOSAA.12.001657
|
12 |
李天一, BUZZICOTTI M, BIFERALE L, 等. Gappy POD方法重构湍流数据的研究[J]. 力学学报, 2021, 53 (10): 2703- 2711.
doi: 10.6052/0459-1879-21-464
|
|
LI T Y, BUZZICOTTI M, BIFERALE L, et al. Reconstruction of turbulence data by Gappy POD method[J]. Chinese Journal of Mechanical Mechanics, 2021, 53 (10): 2703- 2711.
doi: 10.6052/0459-1879-21-464
|
13 |
ZHANG W Q, LI H. A high-order proper orthogonal decomposition dimensionality reduction compact finite-difference method for diffusion problems[J]. Mathematical and Computational Applications, 2025, 30(4): 77.
|
14 |
SEKAR A P K, DOOREN M F V, KUHN M. Overcoming blade interference: a Gappy pod data reconstruction method for nacelle mounted lidar measurements[J] Journal of Physics: Conference Series, 2022, 2265: 022078.
|
15 |
XING X Q, MY H, ZHANG B L, et al. Fusing sensor data with CFD results using Gappy pod[J]. Ocean Engineering, 2022, 246, 110549.
doi: 10.1016/j.oceaneng.2022.110549
|
16 |
SEKAR A P K, DOOREN M F V, ROTT A, et al. Lower order description and reconstruction of sparse scanning lidar measurements of wind turbine inflow using proper orthogonal decomposition[J]. Remote Sensing, 2022, 14(11): 2681.
|
17 |
TAEHYUN J, BONCHAN T, KIM H, et al. Effective sensor placement in a steam reformer using Gappy proper orthogonal decomposition[J]. Applied Thermal Engineering, 2019, 154, 419- 432.
doi: 10.1016/j.applthermaleng.2019.03.089
|
18 |
DANIELE V. Gappy data and reconstruction procedures for flow past a cylinder[J]. Journal of Fluid Mechanics, 2004, 519, 315- 336.
doi: 10.1017/S0022112004001338
|
19 |
ZHANG Z Q, XIU Y, GUANG L. POD-based constrained sensor placement and field reconstruction from noisy wind measurements: a perturbation study[J]. Mathematics, 2016, 4 (2): 26.
doi: 10.3390/math4020026
|
20 |
WIILLCOX K. Unsteady flow sensing and estimation via the Gappy proper orthogonal decomposition[J]. Computers & Fluids, 2006, 35 (2): 208- 226.
|
21 |
YILDIRIM B C, CHRYSSOSTOMIDIS C, KAR-NIADAKIS G E. Efficient sensor placement for ocean measurements using low dimensional concepts[J]. Oceam Modelling, 2009, 27 (3/4): 160- 173.
|
22 |
ZIMMERMANN R, WILLCOX K. An accelerated greedy missing point estimation procedure[J]. SIAM Journal on Scientific Computing, 2016, 38 (5): 2827- 2850.
doi: 10.1137/15M1042899
|
23 |
苑清扬, 薛珂, 张博, 等. Gappy POD算法重构储能电池组核心温度及与BP神经网络预测能力对比[J]. 工程科学学报, 2024, 46 (1): 166- 177.
|
|
YUAN Q Y, XUE K, ZHANG B, et al. Gappy POD algorithm for reconstructing the core temperature of energy-storage battery packs and its comparison with BP neural network prediction ability[J]. Chinese Journal of Engineering, 2024, 46 (1): 166- 177.
|
24 |
YUAN Q Y, XUE K, ZHANG B, et al. Reconstruction of core temperrature of energy storage battery pack by Gappy pod algorithm and comparison with BP neural network[J]. Chinese Journal of Engineering Science, 2024, 46 (1): 166- 177.
|
25 |
SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45 (3): 561- 571.
doi: 10.1090/qam/910462
|
26 |
WANG X, LIU Y H, CAO Z Y, et al. Optimization of supply air parameters control based on gappy pod method for creating non-uniform temperature fields[J]. Buildings, 2023, 13 (7): 1690.
doi: 10.3390/buildings13071690
|
27 |
DEUS J, MARTIN E. Efficient cardiovas-cular parameters estimation for fluid structure simulations using Gappy proper orthogonal decomposition[J]. Annals of Biomedical Engineering, 2024, 52, 3037- 3052.
doi: 10.1007/s10439-024-03568-z
|
28 |
WANG Y L, LI C S, ZHU Z L, et al. Real-time stress field reconstruction method using online monitoring parameters for thick walled power plant components based on Gappy proper orthogonal decomposition[J]. International Journal of Pressure Vessels and Piping, 2024, 209: 105172.
|
29 |
ROWEIS S, SAUL L. Nonlinear dimension-ality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323- 2326.
doi: 10.1126/science.290.5500.2323
|
30 |
MIRSHAFIEI F, MCCLURE G, KAMLAN T, et al. Improved ice shedding modeling of iced cables: a comparison with experimental data[D]. Montreal: McGill University, 2010.
|
31 |
屠珊, 孙弼, 毛靖儒. 用Richardson外推法分析流动传热层流问题的不确定度[J]. 西安交通大学学报, 1999, 33 (11): 49- 52.
|
|
TU S, SUN B, MAO J R. Richardson extrapolation method for analyzing the uncertainty of laminar flow problem in flow heat transfer[J]. Journal of Xi’an Jiaotong University, 1999, 33 (11): 49- 52.
|