系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (9): 2925-2938.doi: 10.12305/j.issn.1001-506X.2025.09.14

• 系统工程 • 上一篇    

系统有限传感器布局优化的相关系数过滤法

苑清扬1(), 韩佳洁1, 薛珂2, 孙维杰1, 张博1,2,*()   

  1. 1. 大连理工大学能源与动力学院,辽宁 大连 116081
    2. 大连理工大学宁波研究院,浙江 宁波 116038
  • 收稿日期:2024-06-20 出版日期:2025-09-25 发布日期:2025-09-16
  • 通讯作者: 张博 E-mail:18842396497@163.com;Yuan_qingy@mail.dlut.edu.cn
  • 作者简介:苑清扬(1998—),男,博士研究生,主要研究方向为复杂系统数字孪生、高保真降阶模型开发、无网格技术与传热流动反问题
    韩佳洁(1999—),女,硕士研究生,主要研究方向为复杂系统数字孪生、降阶模型开发
    薛 珂(1995—),男,工程师,硕士,主要研究方向为能源管理、机电系统控制
    孙维杰(2001—),男,硕士研究生,主要研究方向为先进无网格数值模拟技术
  • 基金资助:
    国家自然科学基金(61372167,61379104)资助课题

Correlation coefficient filtering method for optimizing system limited sensor layout

Qingyang YUAN1(), Jiajie HAN1, Ke XUE2, Weijie SUN1, Bo ZHANG1,2,*()   

  1. 1. School of Energy and Power,Dalian University of Technology,Dalian 116081,China
    2. NingBo Institute of Dalian University of Technology,Ningbo 116038,China
  • Received:2024-06-20 Online:2025-09-25 Published:2025-09-16
  • Contact: Bo ZHANG E-mail:18842396497@163.com;Yuan_qingy@mail.dlut.edu.cn

摘要:

针对Gappy 本征正交分解(proper orthogonal decomposition, POD)方法在有限传感器布局优化中基于条件数准则选点效率低的问题,提出一种相关系数过滤法,以提高选点效率和重构精度。该方法基于全局相关性最大化假设,通过相关系数矩阵筛选最优测点位置,并引入相关程度期望系数和余点数作为关键参数。在一维伯格斯方程和二维方腔顶盖驱动流算例中进行仿真实验,比较不同相关程度期望系数和余点数对Gappy POD重构精度的影响。结果表明,所提方法在保证重构精度的同时减少传感器数量,并在效率和精度上优于条件数准则和遗传算法等传统方法。所提方法在稀疏传感器布局优化中具有较高的应用价值,可为复杂系统流场重构提供高效选点策略。

关键词: Gappy 本征正交分解, 相关系数过滤法, 有限传感器布局优化, 流场重构

Abstract:

To address the low efficiency of point selection based on the condition number criterion in optimizing limited sensor layout for the Gappy proper orthogonal decomposition (POD) method, a correlation coefficient filtering method is proposed to enhance both selection efficiency and reconstruction accuracy. The proposed method is grounded on the global correlation maximization hypothesis, utilizing a correlation coefficient matrix to select optimal measurement point location and introducing the expected coefficient of correlation degree and remaining points as key parameters. Simulation experiments are performed on the one-dimensional Burgers’ equation and two-dimensional lid-driven cavity flow numerical example, comparing the influence of different expectation of relevance level and remaining points on the reconstruction accuracy of Gappy POD. The results indicate that the proposed method reduces the number of sensors while ensuring reconstruction accuracy, and outperforms traditional methods such as the condition number criterion and genetic algorithm in both efficiency and precision. The proposed method has high application value in sparse sensor layout optimization and can provide an efficient strategy for flow field reconstruction in complex systems.

Key words: Gappy proper orthogonal decomposition (POD), correlation coefficient filtering method, finite sensor layout optimisation, flow field reconstruction

中图分类号: