系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (9): 2818-2827.doi: 10.12305/j.issn.1001-506X.2025.09.05
• 电子技术 • 上一篇
收稿日期:
2024-06-27
出版日期:
2025-09-25
发布日期:
2025-09-16
通讯作者:
关欣
E-mail:yuhaotian2015@sina.com
作者简介:
于昊天(1988—),男,讲师,博士研究生,主要研究方向为信息对抗
基金资助:
Received:
2024-06-27
Online:
2025-09-25
Published:
2025-09-16
Contact:
Xin GUAN
E-mail:yuhaotian2015@sina.com
摘要:
针对分布式多目标跟踪系统的最大关联方法没有充分利用航迹关联的全局信息,在不确定性较大的情况下存在失效风险问题,基于证据推理的思想提出基于证据推理的航迹关联检验判决方法,用于处理不确定性较大的航迹关联判决问题。利用该方法对模糊综合决策航迹关联算法和灰色航迹关联算法进行改进,并在编队目标环境下对改进前后算法进行对比仿真,分析改进算法的收敛性和有效性。同时,对算法复杂度进行仿真分析,改进算法在保持O(n2)复杂度的情况下,关联效果逼近O(n3)复杂度的算法。仿真结果表明,改进算法体现了较好的效费比,具备在大量集群目标航迹关联问题中应用的潜力,且随着复杂度增加,改进效果更显著。
中图分类号:
于昊天, 关欣. 基于证据推理的航迹关联检验判决方法[J]. 系统工程与电子技术, 2025, 47(9): 2818-2827.
Haotian YU, Xin GUAN. Evidential reasoning-based decision method for track association verification[J]. Systems Engineering and Electronics, 2025, 47(9): 2818-2827.
表2
3个场景中正确关联率的绝对改进量$\Delta P$"
距离/m | 场景1 | 场景2 | 场景3 | |||||
300 | 0.18 | 6.09 | −2.95 | 5.32 | −0.32 | 13.08 | ||
600 | 2.25 | 10.63 | −1.40 | 13.53 | 0.12 | 22.90 | ||
900 | 3.94 | 10.10 | 1.41 | 18.17 | 2.10 | 32.75 | ||
1 200 | 3.72 | 7.19 | 1.87 | 23.36 | 1.07 | 38.41 | ||
1 500 | 5.49 | 3.70 | 1.29 | 26.89 | 1.99 | 43.38 | ||
1 800 | 5.42 | 1.92 | 1.27 | 27.81 | 2.43 | 46.85 | ||
2 100 | 3.69 | −0.65 | 2.47 | 26.98 | 3.35 | 48.65 | ||
2 400 | 2.47 | −1.12 | 1.61 | 21.89 | 4.44 | 45.17 | ||
2 700 | 3.65 | −0.85 | 2.75 | 15.68 | 4.40 | 41.70 | ||
3 000 | 3.05 | −0.94 | 1.24 | 10.52 | 4.32 | 37.74 | ||
3 300 | 2.21 | −0.65 | 2.10 | 8.03 | 3.94 | 31.89 | ||
3 600 | 2.45 | −0.45 | 0.60 | 4.69 | 3.92 | 25.94 | ||
3 900 | 1.94 | −0.39 | 0.76 | 3.03 | 3.20 | 21.17 | ||
平均值 | 3.11 | 2.66 | 1.00 | 15.84 | 2.69 | 34.59 |
表3
正确关联率占比$\rho $的对比"
距离/m | 场景1 | 场景2 | 场景3 | |||||||||||
300 | 95.76 | 96.34 | 77.91 | 97.05 | 101.38 | 91.46 | 66.18 | 85.20 | 95.71 | 94.52 | 48.21 | 98.99 | ||
600 | 92.42 | 97.28 | 79.97 | 102.57 | 99.20 | 95.93 | 62.24 | 95.22 | 95.23 | 95.56 | 39.50 | 102.22 | ||
900 | 92.47 | 99.39 | 89.21 | 106.53 | 93.94 | 96.59 | 64.12 | 97.85 | 94.04 | 98.66 | 34.62 | 106.52 | ||
1 200 | 91.04 | 96.74 | 97.16 | 107.79 | 91.90 | 94.93 | 64.93 | 101.50 | 97.32 | 99.44 | 33.13 | 104.82 | ||
1 500 | 91.24 | 98.98 | 101.91 | 106.74 | 93.98 | 95.92 | 66.76 | 103.86 | 94.59 | 98.07 | 33.27 | 103.21 | ||
1 800 | 90.62 | 97.62 | 101.22 | 103.49 | 93.26 | 95.03 | 67.86 | 102.05 | 93.71 | 97.66 | 34.30 | 100.98 | ||
2 100 | 92.02 | 96.58 | 104.87 | 104.13 | 93.43 | 96.63 | 71.13 | 101.88 | 93.50 | 98.66 | 37.60 | 101.54 | ||
2 400 | 93.44 | 96.39 | 103.25 | 102.04 | 93.83 | 95.85 | 76.86 | 100.83 | 91.85 | 98.26 | 43.38 | 99.47 | ||
2 700 | 92.71 | 96.98 | 102.75 | 101.85 | 92.54 | 95.81 | 84.13 | 100.78 | 92.28 | 98.42 | 50.14 | 99.40 | ||
3 000 | 93.64 | 97.11 | 102.05 | 101.08 | 93.41 | 94.85 | 88.59 | 99.41 | 91.82 | 97.65 | 56.35 | 99.26 | ||
3 300 | 94.46 | 96.95 | 101.33 | 100.66 | 94.81 | 97.22 | 91.55 | 99.73 | 91.82 | 97.00 | 62.75 | 98.03 | ||
3 600 | 95.13 | 97.86 | 101.12 | 100.66 | 94.80 | 95.47 | 94.93 | 99.68 | 92.40 | 97.41 | 69.84 | 97.85 | ||
3 900 | 94.76 | 96.89 | 100.35 | 99.96 | 95.81 | 96.65 | 96.60 | 99.66 | 92.87 | 96.89 | 75.34 | 97.68 | ||
平均值 | 93.05 | 97.32 | 97.16 | 102.66 | 94.79 | 95.56 | 76.61 | 99.05 | 93.63 | 97.55 | 47.57 | 100.77 |
1 | 何友, 王国宏, 关欣. 信息融合理论及应用[M]. 北京: 电子工业出版社, 2010. |
HE Y, WANG G H, GUAN X. Information fusion theory with applications[M]. Beijing: Publishing House of Electronics Industry, 2010. | |
2 | 崔亚奇, 徐平亮, 龚诚, 等. 基于全球AIS的多源航迹关联数据集[J]. 电子与信息学报, 2023, 45 (2): 746- 756. |
CUI Y Q, XU P L, GONG C, et al. Multisource track association dataset based on the global AIS[J]. Journal of Electronics & Information Technology, 2023, 45 (2): 746- 756. | |
3 | NAZARI M, PASHAZADEH S, KHANLI M L. An adaptive density-based fuzzy clustering track association for distributed tracking system[J]. IEEE Access, 2019, 7, 135972- 135981. |
4 | 衣晓, 关欣, 何友. 分布式多目标跟踪系统的灰色航迹关联模型[J]. 信号处理, 2005, 6, 653- 655,662. |
YI X, GUAN X, HE Y. Grey track correlation model for distributed multitarget tracking system[J]. Signal Processing, 2005, 6, 653- 655,662. | |
5 | 连宇杰, 杨露菁, 卢凌峰, 等. 基于集对分析和双门限的航迹关联算法研究[J]. 指挥控制与仿真, 2020, 42 (1): 40- 46. |
LIAN Y J, YANG L J, LU L F, et al. Research on track association algorithm based on set pair analysis and double threshold[J]. Command Control & Simulation, 2020, 42 (1): 40- 46. | |
6 |
崔亚奇, 熊伟, 唐田田. 一种基于时空交叉点新特征的航迹关联算法[J]. 电子与信息学报, 2020, 42 (10): 2500- 2507.
doi: 10.11999/JEIT190822 |
CUI Y Q, XIONG W, TANG T T. A track correlation algorithm based on new space-time cross-point feature[J]. Journal of Electronics & Information Technology, 2020, 42 (10): 2500- 2507.
doi: 10.11999/JEIT190822 |
|
7 | MINGYANG M, DEJIANG W, TAO Z, et al. Track-to-track association algorithm for passive multi-sensor system based on trajectory parameter[J]. IET Radar, Sonar & Navigation, 2021, 15 (4): 348- 358. |
8 | 衣晓, 曾睿, 曹昕莹. 利用k近邻区间距离的异步抗差航迹关联算法[J]. 系统工程与电子技术, 2022, 44 (5): 1475- 1482. |
YI X, ZENG R, CAO X Y. Asynchronous anti-bias track association algorithm by using k-nearest neighbors interval distance[J]. Systems Engineering and Electronics, 2022, 44 (5): 1475- 1482. | |
9 | QI L, DONG K, LIU Y, et al. Anti-bias track-to-track association algorithm based on distance detection[J]. IET Radar, Sonar & Navigation, 2017, 11 (2): 269- 276. |
10 | XIONG W, XU P L, CUI Y Q, et al. TF-TS: track-to-track association via track fusion and track segmentation in distributed multi-sensor systems[J]. Expert Systems With Applications, 2024, 255 (A): 124540. |
11 | QU S, MENG C Z, JIN H B, et al. A method of multiple targets and sensors track association analysis[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2024, 38 (11): 2450016. |
12 |
崔亚奇, 何友, 唐田田, 等. 一种深度学习航迹关联方法[J]. 电子学报, 2022, 50 (3): 759- 763.
doi: 10.12263/DZXB.20200299 |
CUI Y Q, HE Y, TANG T T, et al. A deep learning track correlation method[J]. Acta Electronica Sinica, 2022, 50 (3): 759- 763.
doi: 10.12263/DZXB.20200299 |
|
13 | XIONG W, XIANG G, CUI Y Q. Point-track association method with unknown system model[J]. IET Radar, Sonar & Navigation, 2022, 16 (11): 1779- 1795. |
14 | CUI Y Q, LIU Y, TANG T T, et al. A new adaptive track correlation method for multiple scenarios[J]. IET Radar, Sonar & Navigation, 2021, 15 (9): 1112- 1124. |
15 | QI L, WANG P H, LIU Y, et al. Anti-bias association algorithm for AIS and radar tracks based on centroid reference topological characteristics[J]. Applied Mechanics and Materials, 2014, (596): 511- 518. |
16 | DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. Annals of Mathematical Statistics, 1967, 38 (2): 325- 339. |
17 | SHAFER G A. Mathematical theory of evidence[M]. New Jersey: Princeton University Press, 1976. |
18 | 关欣, 衣晓, 胡丽芳等. 冲突证据推理与融合[M]. 北京: 电子工业出版社, 2020. |
GUAN X, YI X, HU L F, et al. Conflict evidential reasoning and fusion[M]. Beijing: Publishing House of Electronics Industry, 2020. | |
19 | WU X G, ZHAO H Y, XU W T, et al. Fault diagnosis of the distribution network based on the D-S evidence theory Bayesian network[J]. Frontiers in Energy Research, 2024, 12: 1422639. |
20 | LIU N K, ZHOU Z F, ZHU L J, et al. Fault diagnosis of unmanned aerial systems using the Dempster–Shafer evidence theory[J]. Actuators, 2024, 13 (7): 264- 264. |
21 | LIU Y, LI Z X, ZHANG L F, et al. Fault diagnosis method for space fluid loop systems based on improved evidence theory[J]. Entropy, 2024, 26 (5): 427- 440. |
22 | 刘帅彤, 李晓军, 周志杰, 等. 证据理论在模式分类中的应用综述[J]. 中国电子科学研究院学报, 2022, 17 (3): 247- 258. |
LIU S T, LI X J, ZHOU Z J, et al. Review on the application of evidence theory in pattern classification[J]. Journal of CAEIT, 2022, 17 (3): 247- 258. | |
23 | LI Z W, ZHANG Q L, LIU S P, et al. Information fusion and attribute reduction for multi-source incomplete mixed data via conditional information entropy and D-S evidence theory[J]. Applied Soft Computing, 2024, 151, 111149. |
24 | HUANG L, RUAN S, DECAZES P, et al. Deep evidential fusion with uncertainty quantification and reliability learning for multimodal medical image segmentation[J]. Information Fusion, 2025, 113: 102648. |
25 | LIANG J L, FANG H, ZHANG X G. SAR image fusion classification based on improved D-S evidence theory[J]. Journal of Physics: Conference Series, 2024, 2759, 012002. |
26 | LIAO Z R, WANG S P, SHI J, et al. Cooperative situational awareness of multi-UAV system based on improved D-S evidence theory[J]. Aerospace Science and Technology, 2023, 142, 108605. |
27 | LI Y Z, YAO S J, ZHANG R Y, et al. Analyzing host security using D-S evidence theory and multisource information fusion[J]. International Journal of Intelligent Systems, 2020, 36 (2): 1053- 1068. |
28 | LI J W, XIE B L, JIN Y, et al. Generating method and application of basic probability assignment based on interval number distance and model reliability[J]. Soft Computing, 2023, 28 (3): 2353- 2365. |
29 | DU W Y, ZHONG J J, WANG M Y. Analytical generalized combination rule for evidence fusion[J]. Information Sciences, 2025, 686, 120903. |
30 | YE F, CHEN J, LI Y B, et al. Decision-making algorithm for multi-sensor fusion based on grey relation and DS evidence theory[J]. Journal of Sensors, 2016, 7, 3954573. |
[1] | 李春雨, 辛虎兵, 宋艳琴. 一种航天发射任务分布式多站实时航迹处理方法[J]. 系统工程与电子技术, 2025, 47(7): 2185-2193. |
[2] | 杨鑫, 阮开智, 刘红明, 王晓科, 刘静秋, 施裕升. 基于目标量测误差分布的航迹抗差关联算法[J]. 系统工程与电子技术, 2024, 46(8): 2820-2828. |
[3] | 刘嘉琛, 董磊, 陈曦, 梁博尧, 王鹏. 基于改进STPA-DEMATEL的智能航电系统致因要素分析[J]. 系统工程与电子技术, 2024, 46(6): 2023-2033. |
[4] | 吴钇达, 王彩云, 王佳宁, 李晓飞. 基于ISVM-DS的红外多传感器融合识别方法[J]. 系统工程与电子技术, 2024, 46(5): 1555-1560. |
[5] | 郑丽莎, 尹东亮, 王旋. 基于改进D-S证据理论的相控阵雷达作战效能评估[J]. 系统工程与电子技术, 2024, 46(4): 1330-1336. |
[6] | 邱建杰, 蔡益朝, 李浩, 黄权印. 基于动态估计反馈的灰色理论航迹关联算法[J]. 系统工程与电子技术, 2024, 46(4): 1401-1411. |
[7] | 郝文康, 陈琪锋. 无人机编队模糊约束分布式模型预测节能控制[J]. 系统工程与电子技术, 2024, 46(3): 1021-1030. |
[8] | 任文娟, 杨战鹏, 许光銮, 付琨. 海上动目标身份置信度融合计算模型[J]. 系统工程与电子技术, 2023, 45(4): 1082-1089. |
[9] | 国佳恩, 周正, 曾睿. 多局部节点异步航迹快速关联算法[J]. 系统工程与电子技术, 2023, 45(3): 669-677. |
[10] | 苑申昊, 陈增茂, 刁鸣, 孙志国, 孙溶辰. 基于复合熵和证据理论的抗SSDF攻击协作频谱感知方法[J]. 系统工程与电子技术, 2023, 45(11): 3663-3670. |
[11] | 韩伟, 王国师, 晏凯, 宋亚伟. 基于多维分配的多普勒盲区目标点迹-航迹关联方法[J]. 系统工程与电子技术, 2023, 45(10): 3091-3097. |
[12] | 关欣, 国佳恩. 基于迭代离散度序贯检测的航迹抗差关联算法[J]. 系统工程与电子技术, 2022, 44(8): 2498-2505. |
[13] | 刘康, 何明浩, 韩俊, 王庚. 基于本征向量和Jousselme距离的高冲突证据融合方法[J]. 系统工程与电子技术, 2022, 44(7): 2175-2180. |
[14] | 衣晓, 曾睿, 曹昕莹. 利用k近邻区间距离的异步抗差航迹关联算法[J]. 系统工程与电子技术, 2022, 44(5): 1475-1482. |
[15] | 王旋, 狄鹏, 尹东亮. 基于Lance距离和信度熵的冲突证据融合方法[J]. 系统工程与电子技术, 2022, 44(2): 592-602. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||