1 |
SHI Q, ZHANG T X, YU X X, et al. Waveform designs for joint radar-communication systems with OQAM-OFDM[J]. Signal Processing, 2022, 195, 108462.
doi: 10.1016/j.sigpro.2022.108462
|
2 |
WANG M, CHAN A K, CHUI C K. Linear frequency-modulated signal detection using radon-ambiguity transform[J]. IEEE Trans. on Signal Processing, 1998, 46 (3): 571- 586.
doi: 10.1109/78.661326
|
3 |
LEE D H, SHIN J W, DO D W, et al. Robust LFM target detection in wideband sonar systems[J]. IEEE Trans. on Aerospace & Electronic Systems, 2017, 53 (5): 2399- 2412.
|
4 |
DUAN Y, WANG J Z, SU S Y, et al. Detection of LFM signals in low SNR based on STFT and wavelet denoising[C]//Proc. of the International Conference on Audio, Language and Image Processing, 2014: 921–925.
|
5 |
XU F F, BAO Q L, CHEN Z P, et al. Parameter estimation of multi-component LFM signals based on STFT+Hough transform and fractional Fourier transform[C]//Proc. of the 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, 2018: 839–842.
|
6 |
WU Y S, LI X K. Elimination of cross-terms in the Wigner-Ville distribution of multi-component LFM signals[J]. IET Signal Processing, 2017, 11 (6): 657- 662.
doi: 10.1049/iet-spr.2016.0358
|
7 |
ZHANG Z C, LI D, CHEN Y J, et al. Linear canonical wigner distribution of noisy LFM signals via multiobjective optimization analysis involving variance-SNR[J]. IEEE Communications Letters, 2021, 25 (2): 546- 550.
doi: 10.1109/LCOMM.2020.3031982
|
8 |
GU T, LIAO G S, LI Y C, et al. Parameter estimate of multi-component LFM signals based on GAPCK[J]. Digital Signal Processing, 2020, 100, 102683.
doi: 10.1016/j.dsp.2020.102683
|
9 |
OZAKTAS H M, ARIKAN O, KUTAY A M, et al. Digital computation of the fractional Fourier transform[J]. IEEE Trans. on Signal Processing, 1996, 44 (9): 2141- 2150.
doi: 10.1109/78.536672
|
10 |
COWELL D M, FREEAR S. Separation of overlapping linear frequency modulated (LFM) signals using the fractional Fourier transform[J]. IEEE Trans. on Ultrasonics Ferroelectrics and Frequency Control, 2010, 57 (10): 2324- 2333.
doi: 10.1109/TUFFC.2010.1693
|
11 |
刘锋, 徐会法, 陶然, 等. 分数阶Fourier域多分量LFM信号间的分辨研究[J]. 中国科学: 信息科学, 2012, 42 (2): 136- 148.
|
|
LIU F, XU H F, TAO R, et al. Resolution of multi-component LFM signals in fractional Fourier domain[J]. SCIENCE CHINA Informationis, 2012, 42 (2): 136- 148.
|
12 |
MIAO H X, ZHANG F, TAO R. Fractional Fourier analysis using the Möbius inversion formula[J]. IEEE Trans. on Signal Processing, 2019, 67 (12): 3181- 3196.
doi: 10.1109/TSP.2019.2912878
|
13 |
YAN P, YVAN P, KEITH B, et al. Spatially distributed MIMO sonar systems: principles and capabilities[J]. IEEE Journal of Oceanic Engineering, 2017, 42 (3): 738- 751.
doi: 10.1109/JOE.2016.2593602
|
14 |
LIU X, SHI R W, SUN C, et al. Using deconvolution to suppress range sidelobes for MIMO sonar imaging[J]. Applied Acoustics, 2022, 186, 108491.
doi: 10.1016/j.apacoust.2021.108491
|
15 |
刁鸣, 朱云飞, 宁晓燕, 等. 基于新型DFrFT的LFM信号参数估计算法[J]. 哈尔滨工业大学学报, 2022, 54 (5): 88- 93.
doi: 10.11918/202106073
|
|
DIAO M, ZHU Y F, NING X Y, et al. LFM signal parameter estimation algorithm based on novel DFrFT[J]. Journal of Harbin Institute of Technology, 2022, 54 (5): 88- 93.
doi: 10.11918/202106073
|
16 |
陈艳丽, 郭良浩, 宫在晓. 简明分数阶傅里叶变换及其对线性调频信号的检测和参数估计[J]. 声学学报, 2015, 40 (6): 761- 771.
|
|
CHEN Y L, GUO L H, GONG Z X. Simple fractional Fourier transform and its detection and parameter estimation for linear frequency modulation signals[J]. Acta Acoustica, 2015, 40 (6): 761- 771.
|
17 |
MA Y, KONG Y. FRFT based on joint estimation time delay and radial velocity of underwater target[C]//Proc. of the 3rd International Congress on Image and Signal Processing, 2010: 4074−4078.
|
18 |
马艳, 罗美玲. 基于分数阶傅里叶变换水下目标距离及速度的联合估计[J]. 兵工学报, 2011, 32 (8): 1030- 1035.
|
|
MA Y, LUO M L. Joint estimation of underwater target distance and velocity based on fractional Fourier transform[J]. Acta Armamentarii, 2011, 32 (8): 1030- 1035.
|
19 |
黄响, 唐世阳, 张林让, 等. 一种基于高效FrFT的LFM信号检测与参数估计快速算法[J]. 电子与信息学报, 2017, 39 (12): 2905- 2911.
|
|
HUANG X, TANG S Y, ZHANG L R, et al. A fast algorithm of LFM signal detection and parameter estimation based on efficient FrFT[J]. Journal of Electronics & Information Technology, 2017, 39 (12): 2905- 2911.
|
20 |
宋耀辉, 黄仰超, 张衡阳, 等. 基于FRFT的多分量LFM信号检测与参数估计方法[J]. 北京航空航天大学学报, 2020, 46 (6): 1221- 1228.
|
|
SONG Y H, HUANG Y C, ZHANG H Y, et al. Multicomponent LFM signal detection and parameter estimation method based on FRFT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (6): 1221- 1228.
|
21 |
ALDIMASHKI O, SERBES A. Performance of chirp parameter estimation in the fractional Fourier domains and an algorithm for fast chirp-rate estimation[J]. IEEE Trans. on Aerospace and Electronic Systems, 2020, 56 (5): 3685- 3700.
doi: 10.1109/TAES.2020.2981268
|
22 |
刘利民, 李豪欣, 李琦, 等. 基于分数阶傅里叶变换的低信噪比线性调频信号参数快速估计算法[J]. 电子与信息学报, 2021, 43 (10): 2798- 2804.
doi: 10.11999/JEIT200973
|
|
LIU L M, LI H X, LI Q, et al. A fast signal parameter estimation algorithm for linear frequency modulation signal under low signal-to-noise ratio based on fractional Fourier transform[J]. Journal of Electronics & Information Technology, 2021, 43 (10): 2798- 2804.
doi: 10.11999/JEIT200973
|
23 |
LIU X L, XIAO B, WANG C Y. Optimal target function for the fractional Fourier transform of LFM signals[J]. Circuits, Systems, and Signal Processing, 2022, (41): 4160- 4173.
|
24 |
刘锋, 徐会法, 陶然. 分数阶Fourier变换中量纲归一化因子的选取[J]. 系统工程与电子技术, 2011, 33 (2): 237- 241.
doi: 10.3969/j.issn.1001-506X.2011.02.01
|
|
LIU F, XU H F, TAO R. Selection of dimensional normalization factors in fractional Fourier transform[J]. Systems Engineering and Electronics, 2011, 33 (2): 237- 241.
doi: 10.3969/j.issn.1001-506X.2011.02.01
|
25 |
GE Y, PIAO S C, HAN X. Fractional Fourier transform-based detection and delay time estimation of moving target in strong reverberation environment[J]. IET Radar, Sonar & Navigation, 2017, 11 (9): 1367- 1372.
|
26 |
YIN Z P, ZHANG D C, CHEN W D, et al. LFM signal detection using the origin moment of fractional spectrum[C]//Proc. of the 9th International Conference on Signal Processing, 2008: 191−194.
|
27 |
LU Z K, LIU S, QIU J, et al. An efficient method for parameter estimation and separation of multi-component LFM signals[J]. Signal Processing, 2023, 207, 108964.
|
28 |
ALKISHRIWO O A, CHAPARRO L F, AKAN A. Signal separation in the Wigner distribution domain using fractional Fourier transform[C]//Proc. of the 19th European Signal Processing Conference, 2011: 1879−1883.
|
29 |
齐林, 陶然, 周思永, 等. 基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J]. 中国科学E辑, 2004, 47 (2): 184- 198.
|
|
QI L, TAO R, ZHOU S Y, et al. Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform[J]. Science in China(Series E), 2004, 47 (2): 184- 198.
|
30 |
关键, 姜星宇, 刘宁波, 等. 海杂波中目标分数域谱范数特征检测方法[J]. 电子与信息学报, 2023, 45 (6): 2162- 2170.
|
|
GUAN J, JIANG X Y, LIU N B, et al. Spectral norm feature detection method in FRFT domain of targets in sea clutter[J]. Journal of Electronics & Information Technology, 2023, 45 (6): 2162- 2170.
|
31 |
CHEN X L, GUAN J, ZHENG J B, et al. Radar fast long-time coherent integration via TR-SKT and robust sparse FRFT[J]. Journal of Systems Engineering and Electronics, 2023, 34 (5): 1116- 1129.
doi: 10.23919/JSEE.2022.000099
|
32 |
LIU X L, XIAO B, WANG C Y. Frequency estimation of chirp signals based on fractional Fourier transform combined with Otsu’s method[J]. Optik, 2021, 240, 166945.
doi: 10.1016/j.ijleo.2021.166945
|