1 |
LIU Q , LENG J W , YAN D X , et al. Digital twin-based desi-gning of the configuration, motion, control, and optimizationmodel of a flow-type smart manufacturing system[J]. Journal of Manufacturing Systems, 2021, 58 (2): 52- 64.
|
2 |
REN H R , LU R Q , XIONG J L , et al. Optimal filtered and smoothed estimators for discrete-time linear systems with multiple packet dropouts under Markovian communication constraints[J]. IEEE Trans.on Cybernetics, 2020, 50 (9): 4169- 4181.
doi: 10.1109/TCYB.2019.2924485
|
3 |
LI H Y , WU Y , CHEN M . Adaptive fault-tolerant tracking control for discrete-time multiagent systems via reinforcement learning algorithm[J]. IEEE Trans.on Cybernetics, 2021, 51 (3): 1163- 1174.
doi: 10.1109/TCYB.2020.2982168
|
4 |
VAMVOUDAKIS K G , LEWIS F L . Online actor-critic algorithm to solve the continuous-time infinite horizonoptimal control problem[J]. Automatica, 2010, 46 (5): 878- 888.
doi: 10.1016/j.automatica.2010.02.018
|
5 |
WANG D , LI C , LIU D R , et al. Data-based robust optimal control of continuous-time affine nonlinear systems withmatched uncertainties[J]. Information Sciences, 2016, 366 (30): 121- 133.
|
6 |
BHASIN S , KAMALAPURKAR R , JOHNSON M , et al. A novel actor-critic-identifier architecture for approximateoptimal control of uncertain nonlinear systems[J]. Automatica, 2013, 49 (1): 82- 92.
doi: 10.1016/j.automatica.2012.09.019
|
7 |
WEN G , GE S S , TU F . Optimized backstepping for tracking control of strict-feedback systems[J]. IEEE Trans.on Neural Networks and Learning Systems, 2018, 29 (8): 3850- 3862.
doi: 10.1109/TNNLS.2018.2803726
|
8 |
WEN G , CHEN C L P , GE S S . Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions[J]. IEEE Trans.on Cybernetics, 2021, 51 (9): 4567- 4580.
doi: 10.1109/TCYB.2020.3002108
|
9 |
WEN G , CHEN C L P . Optimized backstepping consensus control using reinforcement learning for a class of nonlinear strict-feedback dynamic multi-agent systems[J]. IEEE Trans.on Neural Networks and Learning Systems, 2023, 34 (3): 1524- 1536.
doi: 10.1109/TNNLS.2021.3105548
|
10 |
SU Y , SHAN Q , LI T S , et al. Variable separation-based fuzzy optimal control for multiagent systems in nonstrict feedback form[J]. IEEE Trans.on Fuzzy Systems, 2024, 32 (2): 547- 561.
doi: 10.1109/TFUZZ.2023.3302293
|
11 |
WU J , WANG W , DING S H , et al. Adaptive neural optimized control for uncertain strict-feedback systems with unknown control directions and pre-set performance[J]. Communications in Nonli-near Science and Numerical Simulation, 2023, 126, 107506.
doi: 10.1016/j.cnsns.2023.107506
|
12 |
ZHANG L L , CHE W W , DENG C , et al. Optimized adaptive fuzzy security control of nonlinear systems with prescribed tracking performance[J]. IEEE Trans.on Cybernetics, 2023, 53 (12): 7868- 7880.
doi: 10.1109/TCYB.2023.3234295
|
13 |
WANG T C , SUI S , TONG S C . Data-based adaptive neural network optimal output feed- back control for nonlinear systems with actuator saturation[J]. Neurocomputing, 2017, 247 (28): 192- 201.
|
14 |
罗傲. 基于反步法的非线性系统自适应最优控制研究[D]. 广州: 广东工业大学, 2022.
|
|
LUO A. Research on adaptive optimal control of nonlinear systems based on backstepping method[D]. Guangzhou: Guangdong University of Technology, 2022.
|
15 |
WEN G X , HAO W , FENG W W , et al. Optimized backstepping tracking control using reinforcement learning forquadrotor unmanned aerial vehicle system[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2022, 52 (8): 5004- 5015.
doi: 10.1109/TSMC.2021.3112688
|
16 |
WEN G , GE S S , CHEN C L , et al. Adaptive tracking control of surface vessel using optimized backstepping technique[J]. IEEE Trans.on Cybernetics, 2019, 49 (9): 3420- 3431.
doi: 10.1109/TCYB.2018.2844177
|
17 |
TONG S C , LI Y M , SUI S . Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear systems[J]. IEEE Trans.on Fuzzy Systems, 2016, 24 (6): 1441- 1454.
doi: 10.1109/TFUZZ.2016.2540058
|
18 |
TONG S C , LI Y M , SUI S . Adaptive fuzzy output feedback control for switched non-strict-feedback nonlinear systemswith input nonlinearities[J]. IEEE Trans.on Fuzzy Systems, 2016, 24 (6): 1426- 1440.
doi: 10.1109/TFUZZ.2016.2516587
|
19 |
BAI W W , LI T S , TONG S C . NN reinforcement learning adaptive control for a class of nonstrict-feedback discrete-time systems[J]. IEEE Trans.on Cybernetics, 2020, 50 (11): 4573- 4584.
doi: 10.1109/TCYB.2020.2963849
|
20 |
YUAN L E , LI T S , TONG S C , et al. NN adaptive optimal tracking control for a class of uncertain nonstrict feedback nonlinear systems[J]. Neurocomputing, 2022, 491 (24): 382- 394.
|
21 |
CHEN P H , LUAN X L , WANG Z G , et al. Adaptive neural optimal tracking control of stochastic nonstrict-feedback nonli-near systems with output constraints[J]. Journal of the Franklin Institute, 2023, 360 (16): 12299- 12338.
doi: 10.1016/j.jfranklin.2023.09.006
|
22 |
ZHANG J X , LI K W , LI Y M . Output-feedback based simplified optimized back-stepping control for strict-feedback systems with input and state constraints[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8 (6): 1119- 1132.
doi: 10.1109/JAS.2021.1004018
|
23 |
LI Y M , LIU Y J , TONG S C . Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints[J]. IEEE Trans.on Neural Networks and Learning Systems, 2022, 33 (7): 3131- 3145.
doi: 10.1109/TNNLS.2021.3051030
|
24 |
JING Y H , YANG G H . Adaptive fuzzy output feedback fault-tole-rant compensation for uncertain nonlinear systems with infinite number of time-varying actuator failures and full-state constraints[J]. IEEE Trans.on Cybernetics, 2021, 51 (2): 568- 578.
doi: 10.1109/TCYB.2019.2904768
|
25 |
罗傲, 肖文彬, 周琪, 等. 基于强化学习的一类具有输入约束非线性系统最优控制[J]. 控制理论与应用, 2022, 39 (1): 154- 164.
|
|
LUO A , XIAO W B , ZHOU Q , et al. Optimal control for a class of nonlinear systems with input constraints based on reinforcement learning[J]. Control Theory and Technology, 2022, 39 (1): 154- 164.
|
26 |
LIU Y C , ZHU Q D , WEN G X . Adaptive tracking control for perturbed strict-feedback nonlinear systems based on optimized back-stepping technique[J]. IEEE Trans.on Neural Networks and Learning Systems, 2022, 33 (2): 853- 865.
doi: 10.1109/TNNLS.2020.3029587
|
27 |
WANG D , HE H B , LIU D R . Improving the critic learning for event-based nonlinear control design[J]. IEEE Trans.on Cybernetics, 2017, 47 (10): 3417- 3428.
doi: 10.1109/TCYB.2017.2653800
|
28 |
YANG X , GAO Z K , ZHANG J H . Event-driven control with critic learning for nonlinear systems[J]. Neural Networks, 2020, 132 (12): 30- 42.
|
29 |
GAO Y X , LIU C S , JIANG S , et al. Zero-sum differential games-based fast adaptive robust optimal sliding mode control design for uncertain missile autopilot with constrained input[J]. International Journal of Control, 2022, 95 (7): 1789- 1801.
doi: 10.1080/00207179.2021.1872802
|
30 |
HUANG Y , XUE W C . Active disturbance rejection control: methodology and theoretical analysis[J]. ISA Transactions, 2014, 53 (4): 963- 976.
doi: 10.1016/j.isatra.2014.03.003
|
31 |
CHEN W H , YANG J , GUO L , et al. Disturbance-observer-based control and related methods: an overview[J]. IEEE Trans.on Industrial Electronics, 2016, 63 (2): 1083- 1095.
doi: 10.1109/TIE.2015.2478397
|