1 |
GALLAGER R G . Low density parity check codes[J]. IRE Transactions on Information Theory, 1962, 8 (1): 21- 28.
doi: 10.1109/TIT.1962.1057683
|
2 |
MACKAY D J C , NEAL R M . Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1996, 33, 457- 458.
|
3 |
CHANVAT R, GARCIA-PENA A, PAONNI M. On efficient and low-complexity decoding of binary LDPC-coded CSK signals for GNSS links with increased data rates[C]//Proc. of the IEEE/ION Position, Location and Navigation Symposium, 2020: 1202-1213.
|
4 |
MAHDI A , KANISTRA N , PALIOURAS V . A multirate fully parallel LDPC encoder for the IEEE 802.11n/ac/ax QC-LDPC codes based on reduced complexity XOR trees[J]. IEEE Trans.on Very Large Scale Integration (VLSI) Systems, 2021, 29 (1): 51- 64.
doi: 10.1109/TVLSI.2020.3034046
|
5 |
LEE S J , PARK S S , JANG B S , et al. Multi-mode QC-LDPC decoding architecture with novel memory access scheduling for 5G new-radio standard[J]. IEEE Trans.on Circuits and Systems Ⅰ: Regular Papers, 2022, 69 (5): 2035- 2048.
doi: 10.1109/TCSI.2022.3150022
|
6 |
RICHARDSON T J , URBANKE R L . The capacity of low-density parity-check codes under message-passing decoding[J]. IEEE Trans.on Information Theory, 2002, 47 (2): 599- 618.
|
7 |
FOSSORIER M P C , MIHALIEVIC M , LMAI H , et al. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation[J]. IEEE Trans.on Communications, 1999, 47 (5): 673- 680.
doi: 10.1109/26.768759
|
8 |
LIU X C , ZHANG Y B , CUI R . Variable-node-based dynamic scheduling strategy for belief-propagation decoding of LDPC codes[J]. IEEE Communications Letters, 2015, 19 (2): 147- 150.
doi: 10.1109/LCOMM.2014.2385096
|
9 |
CHEN J , FOSSORIER M P C . Near optimum universal belief propagation based decoding of low-density parity check codes[J]. IEEE Trans.on Communications, 2002, 50 (3): 406- 414.
doi: 10.1109/26.990903
|
10 |
CHEN J , FOSSORIER M P C . Density evolution for two improved BP-based decoding algorithms of LDPC codes[J]. IEEE Communications Letters, 2002, 6 (5): 208- 210.
doi: 10.1109/4234.1001666
|
11 |
范亚楠, 王丽冲, 姚秀娟, 等. 一种交叠的Shuffled-BP LDPC译码算法[J]. 电子与信息学报, 2016, 38 (11): 2908- 2915.
|
|
FAN Y N , WANG L C , YAO X J , et al. An overlapped Shuffled-BP LDPC decoding algorithm[J]. Journal of Electronics & Information Technology, 2016, 38 (11): 2908- 2915.
|
12 |
YEDIDIA J S , WANG Y , DRAPER S C . Divide and concur and difference-map BP decoders for LDPC codes[J]. IEEE Trans.on Information Theory, 2011, 57 (2): 786- 802.
doi: 10.1109/TIT.2010.2094815
|
13 |
DARABIHA A, CARUSON A C, KSCHISCHANG F R. A bit-serial approximate min-sum LDPC decoder and FPGA implementation[C]//Proc. of the IEEE International Symposium on Circuits & Systems, 2006: 4-7.
|
14 |
WU Z J , SU K X , GUO L T . A modified min sum decoding algorithm based on LMMSE for LDPC codes[J]. AEUE-International Journal of Electronics and Communications, 2014, 68 (10): 994- 999.
|
15 |
WANG X M , CAO W L , LI J , et al. Improved min-sum algorithm based on density evolution for low-density parity check codes[J]. IET Communications, 2017, 11 (10): 1582- 1586.
doi: 10.1049/iet-com.2017.0014
|
16 |
陈发堂, 张友寿, 杜铮. 5G低密度奇偶校验码的低复杂度偏移最小和算法[J]. 计算机应用, 2020, 40 (7): 2028- 2032.
|
|
CHEN F T , ZHANG Y S , DU Z . Low complexity offset min-sum algorithm for 5G low density parity check codes[J]. Journal of Computer Applications, 2020, 40 (7): 2028- 2032.
|
17 |
陈发堂, 李贺宾, 李平安. 基于偏移最小和的LDPC译码改进算法[J]. 系统工程与电子技术, 2022, 44 (7): 2350- 2356.
doi: 10.12305/j.issn.1001-506X.2022.07.32
|
|
CHEN F T , LI H B , LI P A . Improved algorithm based on offset min-sum decoding for LDPC codes[J]. Systems Engineering and Electronics, 2022, 44 (7): 2350- 2356.
doi: 10.12305/j.issn.1001-506X.2022.07.32
|
18 |
CAI H H, YANG Y K, YI Q. A low complexity decoding algorithm design based on quasi-cyclic LDPC codes[C]//Proc. of the International Conference on Computing, Electronics & Communications Engineering, 2020: 45-50.
|
19 |
宁晓燕, 孙晶晶, 孙志国, 等. LDPC码的分层类拟合修正最小和译码算法[J]. 哈尔滨工业大学学报, 2022, 54 (11): 88- 94.
|
|
NING X Y , SUN J J , SUN Z G , et al. Layered class fitting modified minimum sum decoding algorithm for LDPC codes[J]. Journal of Harbin Institute of Technology, 2022, 54 (11): 88- 94.
|
20 |
JIAO X P , MU J J , WEI H Y . Reduced complexity node-wise scheduling of ADMM decoding for LDPC codes[J]. IEEE Communications Letters, 2017, 21 (3): 472- 475.
doi: 10.1109/LCOMM.2016.2643629
|
21 |
CUI H X , GHAFFARI F , LE K , et al. Design of high-performance and area-efficient decoder for 5G LDPC codes[J]. IEEE Trans.on Circuits and Systems Ⅰ: Regular Papers, 2021, 68 (2): 879- 891.
doi: 10.1109/TCSI.2020.3038887
|
22 |
JIAO X P , MU J J , HE Y C , et al. Efficient ADMM decoding of LDPC codes using lookup tables[J]. IEEE Trans.on Communications, 2017, 65 (4): 1425- 1437.
doi: 10.1109/TCOMM.2017.2659733
|
23 |
BAI J , CHI Y H , YUEN C . Efficient MP decoding via fast G-BADMM approach for binary LDPC codes[J]. IEEE Communications Letters, 2023, 27 (3): 782- 786.
doi: 10.1109/LCOMM.2022.3232703
|
24 |
LIU H Y , HE P Q , JIANG Y , et al. A simple check polytope projection penalized algorithm for ADMM decoding of LDPC codes[J]. IEEE Access, 2023, 11, 2524- 2530.
doi: 10.1109/ACCESS.2023.3234182
|
25 |
XIA Q Q , LIN Y , TANG S D , et al. A fast approximate check polytope projection algorithm for ADMM decoding of LDPC codes[J]. IEEE Communications Letters, 2019, 23 (9): 1520- 1523.
doi: 10.1109/LCOMM.2019.2926085
|
26 |
胡东伟. 5G LDPC码译码器实现[J]. 电子与信息学报, 2021, 43 (4): 1112- 1119.
|
|
HU D W . On the implementation of 5G LDPC decoder[J]. Journal of Electronics & Information Technology, 2021, 43 (4): 1112- 1119.
|
27 |
TIAN K D , WANG H . A novel base graph based static sche-duling scheme for layered decoding of 5G LDPC codes[J]. IEEE Communications Letters, 2022, 26 (7): 1450- 1453.
doi: 10.1109/LCOMM.2022.3171658
|
28 |
LIANG Y H , LAM C T , NG B K. . A low complexity neural normalized min-sum LDPC decoding algorithm using tensor-train decomposition[J]. IEEE Communications Letters, 2022, 26 (12): 2914- 2918.
doi: 10.1109/LCOMM.2022.3207506
|
29 |
CHEN J H , DHOLAKIA A , ELEFTHERIOU E , et al. Reduced-complexity decoding of LDPC codes[J]. IEEE Trans.on Communications, 2005, 53 (8): 1288- 1299.
doi: 10.1109/TCOMM.2005.852852
|
30 |
LEI Y M , JIN Y , ZHANG J J . Check-node lazy scheduling approach for layered belief propagation decoding algorithm[J]. Electronics Letters, 2014, 50 (4): 278- 279.
doi: 10.1049/el.2013.3199
|