

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (11): 3834-3843.doi: 10.12305/j.issn.1001-506X.2025.11.30
• 通信与网络 • 上一篇
收稿日期:2025-05-06
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
杨卓
E-mail:hanqinggu@163.com
作者简介:顾汉清(1981—),男,正高级工程师,博士研究生,主要研究方向为电子对抗
Hanqing GU1(
), Zhuo YANG2,*, Peng ZHANG2, Xiaowen WEN2
Received:2025-05-06
Online:2025-11-25
Published:2025-12-08
Contact:
Zhuo YANG
E-mail:hanqinggu@163.com
摘要:
针对常规单节点干扰方式难以对抗巨型通信星座时空复杂度的问题,提出了面向巨型星座的分布式干扰策略,建立了针对巨型星座下行链路的干扰分析数学模型。采用栅格化的干扰机部署方式提升对抗方的空间分布自由度,提出了干扰概率计算方法和干扰效能评估值指标。基于实际卫星运行数据,以星链系统为例,在不同的射频功率、栅格间距、天线辐射方向图条件下,计算了干扰覆盖范围。仿真结果表明,当节点发射功率为26 dBW时,每个节点的平均干扰覆盖范围可达38.5 km2,为巨型星座的监管和处置提供了支撑。
中图分类号:
顾汉清, 杨卓, 张鹏, 温晓雯. 针对巨型星座下行通信链路的分布式干扰仿真研究[J]. 系统工程与电子技术, 2025, 47(11): 3834-3843.
Hanqing GU, Zhuo YANG, Peng ZHANG, Xiaowen WEN. Simulation research of distributed jamming against mega-constellation downlink communication transmissions[J]. Systems Engineering and Electronics, 2025, 47(11): 3834-3843.
| 1 | 靳瑾, 林子翘, 晏坚, 等. 计算等效功率通量密度概率分布的方法[J]. 清华大学学报 (自然科学版), 2022, 62 (1): 172- 178. |
| JIN J, LIN Z Q, YAN J, et al. Calculational method or assessing the probability distribution of an equivalent power flux density[J]. Journal of Tsinghua University (Science and Technology), 2022, 62 (1): 172- 178. | |
| 2 |
LIN Z Q, JIN J, YAN J, et al. A method for calculating the probability distribution of interference involving mega-constellations[J]. Advances in astronautics science and technology, 2021, 4 (1): 107- 117.
doi: 10.1007/s42423-021-00079-0 |
| 3 |
KIM E, ROBERTS I P, ANDREWS J G. Feasibility analysis of in-band coexistence in dense LEO satellite communication systems[J]. IEEE Trans. on Wireless Communications, 2025, 24 (2): 1663- 1677.
doi: 10.1109/TWC.2024.3511660 |
| 4 |
XU X Y, WANG C H, JIN Z H. An analysis method for ISL of multilayer constellation[J]. Journal of Systems Engineering and Electronics, 2022, 33 (4): 961- 968.
doi: 10.23919/JSEE.2022.000093 |
| 5 |
余文科, 程媛, 李伟. 面向低轨互联网星座的频率干扰仿真研究[J]. 中国电子科学研究院学报, 2022, 17 (5): 501- 507.
doi: 10.3969/j.issn.1673-5692.2022.05.016 |
|
YU W K, CHENG Y, LI W. Simulation research of frequency interference for low Earth orbit satellite constellation networks[J]. Journal of China Academy of Electronics and Information Technology, 2022, 17 (5): 501- 507.
doi: 10.3969/j.issn.1673-5692.2022.05.016 |
|
| 6 |
PEREZ-NEIRA A I, VAZQUEZ M A, SHANKAR M B, et al. Signal processing for high-throughput satellites: challenges in new interference-limited scenarios[J]. IEEE Signal Processing Magazine, 2019, 36 (4): 112- 131.
doi: 10.1109/MSP.2019.2894391 |
| 7 | 彭菲, 刘慧梁, 孙茜, 等. 非静止轨道星座系统级干扰评估研究[J]. 中国空间科学技术, 2023, 43 (5): 46- 55. |
| PENG F, LIU H L, SUN Q, et al. Study on system-level interference evaluation of non-geostationary satellite constellation[J]. Chinese Space Science and Technology, 2023, 43 (5): 46- 55. | |
| 8 |
陈立豪, 刘亚南, 张鹏, 等. 面向巨型星座的干扰计算等效方法[J]. 电波科学学报, 2023, 38 (4): 721- 728.
doi: 10.12265/j.cjors.2023051 |
|
CHEN L H, LIU Y N, ZHANG P, et al. Interference computation equivalent method for giant constellations[J]. Journal of Radio Science, 2023, 38 (4): 721- 728.
doi: 10.12265/j.cjors.2023051 |
|
| 9 | HE Y Z, LI Y, YIN H. Co-frequency interference analysis and avoidance between NGSO constellations: challenges, techniques, and trends[J]. China Communications, 2023, 20 (7): 1- 14. |
| 10 | JALALI M, ORTIZ-GOMEZ F G, LAGUNAS E, et al. Radio regulation compliance of NGSO constellations' interference towards GSO ground stations[C]// Proc. of the 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications, 2022: 1247−1256. |
| 11 | 王海旺, 邹诚, 常家超, 等. 基于发射波束旁瓣零陷的低轨卫星干扰规避策略[J]. 中国科学院大学学报(中英文), 2024, 41 (4): 541- 549. |
| WANG H W, ZOU C, CHANG J C, et al. Interference avoidance strategy for LEO satellite based on transmit beam sidelobe nulling[J]. Journal of University of Chinese Academy of Sciences, 2024, 41 (4): 541- 549. | |
| 12 |
ZHANG C, JIN J, ZHANG H, et al. Spectral coexistence between LEO and GEO satellites by optimizing direction normal of phased array antennas[J]. China Communications, 2018, 15 (6): 18- 27.
doi: 10.1109/CC.2018.8398221 |
| 13 | Federal Communications Commission. Attachment sched S tech report: SAT-LOA-20161115-00118[EB/OL]. [2025-04-06]. https://fcc.report/IBFS/SAT-LOA-20161115-00118/1158525. |
| 14 | Federal Communications Commission. Attachment sched S tech report: SAT-LOA-20170726-00110[EB/OL]. [2025-04-06]. https://fcc.report/IBFS/SAT-LOA-20170726-00110/1380782. |
| 15 | Federal Communications Commission. Attachment sched S tech report: SAT-MOD-20181108-00083[EB/OL]. [2025-04-06]. https://fcc.report/IBFS/SAT-MOD-20181108-00083/1569902. |
| 16 | 汤靖师, 屈颖莹, 王琦. 类星链卫星星座轨道的分析及设计[J]. 天文学报, 2023, 64 (5): 36- 51. |
| TANG J S, QU Y Y, WANG Q. Analysis and design of Starlink-like satellite constellation[J]. Acta Astronomica Sinica, 2023, 64 (5): 36- 51. | |
| 17 |
MCDOWELL J C. The low Earth orbit satellite population and impacts of the SpaceX Starlink constellation[J]. The Astrophysical Journal Letters, 2020, 892 (2): 36- 45.
doi: 10.3847/2041-8213/ab8016 |
| 18 |
聂涛, 潘政雨, 李金峰, 等. 大规模星座近圆无奇异同步快速轨道预报方法[J]. 宇航学报, 2023, 44 (10): 1503- 1511.
doi: 10.3873/j.issn.1000-1328.2023.10.003 |
|
NIE T, PAN Z Y, LI J F, et al. Nonsingular and fast orbit synchronous-prediction method for large-scale constellations[J]. Journal of Astronautics, 2023, 44 (10): 1503- 1511.
doi: 10.3873/j.issn.1000-1328.2023.10.003 |
|
| 19 |
LEI H L. Dynamical models for secular evolution of navigation satellites[J]. Astrodynamics, 2020, 4 (1): 57- 73.
doi: 10.1007/s42064-019-0064-y |
| 20 | CHEN J R, LI J F, WANG X J, et al. A simplex method for the orbit determination of maneuvering satellites[J]. Science China (Physics, Mechanics & Astronomy), 2018, 61(2): 53−59. |
| 21 |
LIANG T F, NIE K Y, LI Q, et al. Advanced analytical model for orbital aerodynamic prediction in LEO[J]. Advances in Space Research, 2023, 71 (1): 507- 524.
doi: 10.1016/j.asr.2022.09.005 |
| 22 |
王迪, 骆盛, 王勇, 等. 星链Ⅲ期回归共地面轨迹星座构型与覆盖分析[J]. 国防科技大学学报, 2024, 46 (5): 150- 158.
doi: 10.11887/j.cn.202405016 |
|
WANG D, LUO S, WANG Y, et al. Constellation configuration and coverage analyses for recursive orbit and common track of Starlink phase Ⅲ[J]. Journal of National University of Defense Technology, 2024, 46 (5): 150- 158.
doi: 10.11887/j.cn.202405016 |
|
| 23 | SpaceX. SpaceX non-geostationary satellite system attachment A technical information to supplement schedule S [R]. Washington: Washington Federal Communications Commission, 2020. |
| 24 | 代健美, 文泓斐. Starlink星地链路性能仿真分析与启示[J]. 通信技术, 2022, 55 (12): 1589- 1596. |
| DAI J M, WEN H F. Simulation and enlightenment of Starlink satellite ground link performance[J]. Communications Technology, 2022, 55 (12): 1589- 1596. | |
| 25 |
HUANG Y, LI S L, LI W, et al. Co-frequency interference analysis between ultra-large-scale NGSO constellations and GSO systems[J]. Journal of Communications and Information Networks, 2023, 8 (1): 80- 89.
doi: 10.23919/JCIN.2023.10087250 |
| 26 | 汪春霆, 张俊祥, 潘申富, 等. 卫星通信系统[M]. 北京: 国防工业出版社, 2012. |
| WANG C T, ZHANG J X, PAN S F, et al. Satellite communication system [M]. Beijing: National Defense Industry Press, 2012. | |
| 27 | International Telecommunication Union. Analytical method for estimating interference between non-geostationary mobile satellite feeder links and geostationary fixed satellite networks operating co-frequency and codirectionally[R]. Geneva: International Telecommunication Union, 1997. |
| 28 | DAVID L A. EW 104: electronic warfare against a new generation of threats[M]. Norwood: Artech House, 2015: 26−27. |
| 29 | Space Exploration Technologies Corp. Antenna apparatus having fastener system[P]. US: 20200381816A1, 2020-01-03. |
| 30 | International Telecommunication Union. Reference receiving earth station antenna pattern for the broadcasting-satellite service in the 11.7-12.75 GHz band[R]. Geneva: International Telemmunication Union, 2005. |
| [1] | 杨华果, 陈全, 杨磊, 尹政龙, 赵勇. 低轨巨型星座网络抗毁性研究进展与展望[J]. 系统工程与电子技术, 2025, 47(6): 2025-2035. |
| [2] | 王志豪, 仲惟超, 张皓. 低轨卫星非奇异平均根数估计算法研究[J]. 系统工程与电子技术, 2025, 47(10): 3411-3425. |
| [3] | 席昕, 刘高高, 刘强, 黄东杰. 对旁瓣相消的分布式干扰优化布阵方法[J]. 系统工程与电子技术, 2024, 46(8): 2623-2628. |
| [4] | 张驰, 陈全, 唐祖平, 魏蛟龙. 基于最小路由代价的巨型星座网络接入策略[J]. 系统工程与电子技术, 2024, 46(5): 1792-1800. |
| [5] | 王春政, 胡明华, 杨磊, 赵征. 空中交通延误预测研究综述[J]. 系统工程与电子技术, 2022, 44(3): 863-874. |
| [6] | 王攀, 陈云翔, 蔡忠义, 李超. 军用飞机修理线建模与修理能力分析[J]. 系统工程与电子技术, 2018, 40(6): 1294-1301. |
| [7] | 陈鹏, 畅志贤, 陈思宏, 李艺霞. 下行卫星认知无线电门限与功率联合优化[J]. 系统工程与电子技术, 2016, 38(9): 2162-2170. |
| [8] | 刘楠1, 张林让1, 赵永红1, 张宏伟2. 双基地MIMO雷达抗分布式干扰方法[J]. 系统工程与电子技术, 2014, 36(7): 1298-1304. |
| [9] | 李世忠, 王国宏, 吴巍,徐海全. 分布式干扰下组网雷达目标检测与跟踪技术[J]. Journal of Systems Engineering and Electronics, 2012, 34(4): 782-788. |
| [10] | 张晓雪, 刘刚, 罗爱民, 罗雪山. 基于对象Petri网的作战行动方案开发方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(10): 2058-2063. |
| [11] | 余文广,王维平,李群,雷永林. 模型驱动的组件化Agent仿真模型开发方法[J]. Journal of Systems Engineering and Electronics, 2011, 33(8): 1907-1912. |
| [12] | 黄建新,李群,贾全,王维平,朱一凡. 基于ABMS的体系效能评估框架研究[J]. Journal of Systems Engineering and Electronics, 2011, 33(8): 1794-1798. |
| [13] | 黄建新, 李群, 贾全, 王维平, 朱一凡. 可组合的Agent体系仿真模型框架研究[J]. Journal of Systems Engineering and Electronics, 2011, 33(7): 1553-1557. |
| [14] | 李妮1, 陈铮2, 龚光红1, 彭晓源1. 多核并行计算技术在景象匹配仿真中的应用[J]. Journal of Systems Engineering and Electronics, 2010, 32(2): 428-432. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||