系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (6): 2025-2035.doi: 10.12305/j.issn.1001-506X.2025.06.30
杨华果, 陈全, 杨磊, 尹政龙, 赵勇
收稿日期:
2024-06-07
出版日期:
2025-06-25
发布日期:
2025-07-09
通讯作者:
陈全
作者简介:
杨华果 (2000—), 女, 硕士研究生, 主要研究方向为低轨卫星网络基金资助:
Huaguo YANG, Quan CHEN, Lei YANG, Zhenglong YIN, Yong ZHAO
Received:
2024-06-07
Online:
2025-06-25
Published:
2025-07-09
Contact:
Quan CHEN
摘要:
低轨巨型星座网络抗毁性作为评估网络性能的关键指标而受到国内外学者的广泛关注。以低轨巨型星座网络抗毁性评估方法为研究对象, 概述低轨巨型星座网络的基本架构和特点, 归纳网络毁伤的威胁因素, 分析在此架构下抗毁性研究所面临的难题。在此基础上, 从图论、节点重要度和网络性能3个方面系统梳理了卫星网络抗毁性评估方法以及抗毁性优化策略, 重点分析了现有抗毁性评估方法的特点及其在低轨巨型星座场景下的局限性。最后, 从进一步增强低轨巨型星座网络抗毁性和优化评估策略的角度考虑, 对未来潜在的研究方向进行了展望。
中图分类号:
杨华果, 陈全, 杨磊, 尹政龙, 赵勇. 低轨巨型星座网络抗毁性研究进展与展望[J]. 系统工程与电子技术, 2025, 47(6): 2025-2035.
Huaguo YANG, Quan CHEN, Lei YANG, Zhenglong YIN, Yong ZHAO. Research progress and prospects of invulnerability for low Earth orbit mega-constellation networks[J]. Systems Engineering and Electronics, 2025, 47(6): 2025-2035.
表1
卫星网络抗毁性评估方法及典型指标"
评估方法 | 典型指标 | 适用性 |
基于图论的抗毁性评估方法 | 连通度、坚韧度、完整度、粘连度、代数连通度等 | 依赖成熟的数学理论和经典算法, 侧重于网络的拓扑结构, 可在总体上分析出网络全局大概的抗毁能力, 适用于对网络整体结构的抗毁性进行评估, 特别是在不考虑节点或边的权重的情况下 |
基于节点重要性的抗毁性评估方法 | 度中心性、k-壳分解、接近中心性、节点收缩法等 | 有明确的节点重要性指标, 可识别出对网络稳定性和连通性最重要的节点, 以更好地适应节点动态变化的网络, 适用于需要识别特定攻击目标或关键资源保护的场景 |
基于网络性能的抗毁性评估方法 | 时延、容量、丢包率、跳数、网络连通度等 | 通过性能指标的变化直接反映网络在遭受攻击或故障后性能下降的情况, 实时性强, 适用于对网络服务质量和性能要求较高的场景 |
表2
基于图论的抗毁性评估相关研究"
文献 | 网络抗毁性评估指标/方法 | 低轨巨型星座网络场景下的局限性 |
文献[ | 连通度、坚韧度、完整度、粘连度、代数连通度 | 未考虑内部节点和边的影响因素, 难以准确衡量整个网络的抗毁性; 网络规模较大时, 难以求得解析解, 且计算复杂度高 |
文献[ | 跳面节点法 | 忽略了跳面间节点和链路的影响因素, 评估模型不够严谨 |
文献[ | 最短路径数法 | 主要针对非赋权无向网络, 且最短路径数法的归一化度量值缺乏合理性, 不适用于巨型星座网络 |
文献[ | 自然连通度 | 巨型星座节点链路冗余度高, 可实现全球多重覆盖, 可能存在部分节点失效后自然连通度明显下降而网络性能下降不明显的情况 |
文献[ | 韧性度 | 需要针对不同网络的移动和切换过程建模, 模型不具备普遍适用性 |
文献[ | 网络最小跳路径数 | 选用节点及链路的介数值来衡量其重要性, 对于巨型星座网络而言, 计算和时间复杂度高, 且难以识别重要节点 |
表3
基于节点重要性的抗毁性评估相关研究"
文献 | 节点重要性评估方法 | 网络抗毁性评估指标 | 低轨巨型星座网络场景下的局限性 |
文献[ | 基于相对节点度和相对节点介数评估节点重要性 | 攻击前后全网效能下降到初始值的比值 | 计算复杂度太高 |
文献[ | 基于介数中心性评估节点重要性 | 卫星节点介数中心性的平衡程度 | 巨型星座网络拓扑对称, 所有节点具有相似的介数中心性, 且介数中心性算法计算复杂度高 |
文献[ | 基于所提广义力学模型评估节点重要性 | 攻击前后网络的连通性变化 | 巨型星座网络具有大尺度空间特性, 难以计算基于全局状态的中心性指标, 且计算复杂度很高 |
文献[ | 比较依次移除单个节点后对整个网络的影响程度, 以评估节点重要性 | 攻击前后网络效率的变化 | 移除单个节点计算耗费较高, 且单个节点影响力有限 |
文献[ | 依次删除网络中的节点,比较删除前后网络结构和效率的变化, 以评估节点重要性 | 攻击前后网络结构熵的变化 | 巨型星座网络拓扑结构动态性强, 且节点数量庞大, 网络计算耗费大 |
文献[ | 基于构建链接概率矩阵的互信息法, 以评估节点重要性 | 卫星节点重要性的平衡程度 | 巨型星座网络中互信息法计算耗时长, 且不足以反映单个节点在整个网络中的全局作用 |
表4
基于网络性能的抗毁性评估相关研究"
文献 | 评估指标/方法 | 研究对象规模 |
文献[ | 毁伤前后丢包率和时延的变化 | 1 152颗巨型星座网络 |
文献[ | 毁伤前后无拥塞卫星比例和丢包率的变化 | “铱星”66颗卫星星座网络和180颗卫星星座网络 |
文献[ | 毁伤导致的级联故障(故障节点数、平均故障次数、网络中断总数) | NeLS 120颗卫星星座网络和650颗巨型星座网络 |
文献[ | 毁伤前后地面站对端到端平均延迟和网络传输容量的变化 | Starlink 1 584颗巨型星座网络和Kuiper 1 156颗巨型星座网络 |
文献[ | 毁伤前后网络连通度、平均延迟和平均跳数的变化 | 3种规模的巨型星座网络: 72×22、144×44和216×66 |
文献[ | 毁伤前后网络可达性、路由恢复时间、路径延迟、星座吞吐量和系统开销的变化 | Starlink 1 584颗巨型星座网络和Kuiper 1 156颗巨型星座网络 |
文献[ | 区域流量容量、服务可用性、用户平面延迟、切换失败率等关键性能指标 | 1 800颗巨型星座网络 |
表5
网络抗毁性优化相关研究"
文献 | 优化目标 | 研究方法特点 |
文献[ | 提高整体网络效率和抗毁性 | 可优化资源分配, 适应变化的网络需求, 提高整体网络效率, 但计算复杂度随网络规模扩大而增加 |
文献[ | 提高巨型星座网络抗毁性 | 消除了由故障导致的拓扑不确定性, 简化了路由问题, 降低了系统开销, 但在复杂故障场景下, 仍可能出现路由循环和拥塞 |
文献[ | 减少计算时间复杂性, 提高网络抗毁性 | 收敛速度更快, 全局最优解的搜索能力更强, 但需调整多参数以达到最优解, 对大规模网络计算的耗费高 |
文献[ | 拓扑管理和动态重构提高卫星网络抗毁性 | 利用动态拓扑重构提高网络连通性, 但需要额外的计算资源 |
文献[ | 基于自然连通性和节点度均匀系数的网络抗毁性评估函数 | 能有效优化网络拓扑结构且避免关键节点和链路的失效, 但在处理大规模网络时计算复杂度高, 且结果依赖于参数选择 |
文献[ | 构建具有最大代数连通性的网络拓扑以提高网络抗毁性 | 可适用于分布式网络引导和重构的算法, 降低问题的复杂性, 但对巨型星座网络而言, 可能存在对计算资源需求高和实时性不够强的问题 |
文献[ | 在覆盖重数、建链数量等约束条件下最优化网络抗毁性 | 从节点和链路两方面对卫星网络抗毁性进行了优化设计, 但对巨型星座网络而言, 在实时性及资源消耗方面存在挑战 |
文献[ | 在平衡路由开销和时延的前提下提高网络抗毁性 | 计算开销较低, 可扩展性强, 适用于巨型星座, 但星座规模的扩大会增加计算开销且对于非规则的星座结构算法需要改进 |
文献[ | 提出新的拓扑控制策略和生存性路由协议,以提高网络抗毁性 | 提供了一种结合集中式和分布式策略的生存性路由协议, 增强了网络抗毁性; 协议具有较低的通信开销, 但分布式路由计算会在网络中引入额外的延迟 |
1 |
JIA H G , JIANG C X , KUANG L L , et al. An analytic ap proach for modeling uplink performance of mega constellations[J]. IEEE Trans. on Vehicular Technology, 2023, 72 (2): 2258- 2268.
doi: 10.1109/TVT.2022.3214275 |
2 | PAN G F , YE J , AN J P , et al. Latency versus reliability in LEO mega-constellations: terrestrial, aerial, or space relay[J]. IEEE Trans. on Mobile Computing, 2023, 22 (9): 5330- 5345. |
3 |
OSORO O B , OUGHTON E J . A techno-economic framework for satellite networks applied to low Earth orbit constellations: assessing Starlink, Oneweb and Kuiper[J]. IEEE Access, 2021, 9, 141611- 141625.
doi: 10.1109/ACCESS.2021.3119634 |
4 | 陈全, 杨磊, 郭剑鸣, 等. 低轨巨型星座网络: 组网技术与研究现状[J]. 通信学报, 2022, 43 (5): 177- 189. |
CHEN Q , YANG L , GUO J M , et al. LEO mega-constellation network: networking technologies and state of the art[J]. Journal on Communications, 2022, 43 (5): 177- 189. | |
5 |
SU Y T , LIU Y Q , ZHOU Y Q , et al. Broadband LEO satellite communications: architectures and key technologies[J]. IEEE Wireless Communications, 2019, 26 (2): 55- 61.
doi: 10.1109/MWC.2019.1800299 |
6 |
YAN W H , AN J P , SONG J P , et al. Multicarrier spread spectrum for mega-constellation satellite networks: challenges, opportunities, and future trends[J]. IEEE Internet of Things Journal, 2023, 10 (23): 20358- 20367.
doi: 10.1109/JIOT.2023.3284506 |
7 |
ZHANG P Y , WANG C , KUMAR N , et al. Space-air-ground integrated multi-domain network resource orchestration based on virtual network architecture: a DRL method[J]. IEEE rans on Intelligent Transportation Systems, 2022, 23 (3): 2798- 2808.
doi: 10.1109/TITS.2021.3099477 |
8 |
WANG N Y , LIU L , QIN Z T , et al. Capacity analysis of LEO mega-constellation networks[J]. IEEE Access, 2022, 10, 18420- 18433.
doi: 10.1109/ACCESS.2022.3149961 |
9 | REN B Y, GE H L, XU G F, et al. Anti-jamming analysis and application of Starlink system[C]//Proc. of the International Conference on Networking, Informatics and Computing, 2023: 149-151. |
10 |
CAPEZ G M , CACERES M A , ARMELLIN R , et al. Characterization of mega-constellation links for LEO missions with applications to EO and ISS use cases[J]. IEEE Access, 2023, 11, 25616- 25628.
doi: 10.1109/ACCESS.2023.3254917 |
11 |
NEINAVAIE M , KASSAS Z M . Cognitive sensing and navigation with unknown OFDM signals with application to terrestrial 5G and Starlink LEO satellites[J]. IEEE Journal on Selected Areas in Communications, 2024, 42 (1): 146- 160.
doi: 10.1109/JSAC.2023.3322811 |
12 | 阮永井, 胡敏, 云朝明. 低轨巨型星座构型设计与控制研究进展与展望[J]. 中国空间科学技术, 2022, 42 (1): 1- 15. |
RUAN Y J , HU M , YUN C M . Advances and prospects of the configuration design and control research of the LEO mega-constellations[J]. Chinese Space Science and Technology, 2022, 42 (1): 1- 15. | |
13 |
ELLISON R J , LINGER R C , LONGSTAFF T , et al. Survivable network system analysis: a case study[J]. IEEE Software, 1999, 16 (4): 70- 77.
doi: 10.1109/52.776952 |
14 |
LI S , ZHANG C , ZHAO C , et al. Analyzing the robustness of LEO satellite networks based on two different attacks and load distribution methods[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2024, 34 (3): 033123.
doi: 10.1063/5.0194027 |
15 | ZHANG L , DU Y . Cascading failure model and resilience enhancement scheme of space information networks[J]. Reliability Engineering & System Safety, 2023, 237, 109379. |
16 | 李远. 巨型星座间干扰分析与智能规避方法研究[D]. 北京: 军事科学院, 2023. |
LI Y. Research on interference analysis and intelligent avoidance method between the giant constellations[D]. Beijing: Academy of Military Sciences, 2023. | |
17 | 吴巍. 天地一体化信息网络发展综述[J]. 天地一体化信息网络, 2020, 1 (1): 1- 16. |
WU W . Survey on the development of space-integrated-ground information network[J]. Space Integrated Ground Information Networks, 2020, 1 (1): 1- 16. | |
18 |
SUNG T , AHN J . Optimal deployment of satellite mega-constellation[J]. Acta Astronautica, 2023, 202, 653- 669.
doi: 10.1016/j.actaastro.2022.10.027 |
19 |
JIANG Y F , HE W X , WU S F , et al. A performance evaluation platform for mega satellite constellation network[J]. Journal of Computer and Communications, 2023, 11 (6): 122- 130.
doi: 10.4236/jcc.2023.116009 |
20 |
ZHANG X L , HU X X , XIE T J . A review of routing algorithms based on multi-layer satellite networks[J]. Journal of Physics: Conference Series, 2021, 2136 (1): 012040.
doi: 10.1088/1742-6596/2136/1/012040 |
21 | MCLAUGHLIN J, CHOI J, DURAIRAJAN R. Grid: a location-oriented topology design for LEO satellites[C]//Proc. of the 1st ACM Workshop on LEO Networking and Communication, 2023: 37-42. |
22 |
LI Y Y , WU J F , KANG G H , et al. A flexible topology control strategy for mega-constellations via inter-satellite links based on dynamic link optimization[J]. Aerospace, 2024, 11 (7): 510.
doi: 10.3390/aerospace11070510 |
23 |
GUO F Q , ZHU J P , HUANG L Q , et al. Enhancing spatial debris material classifying through a hierarchical clustering-fuzzy C-Means integration approach[J]. Applied Sciences, 2023, 13 (8): 4754.
doi: 10.3390/app13084754 |
24 |
GUO W , XU J , PEI Y K , et al. A distributed collaborative entrance defense framework against DDoS attacks on satellite Internet[J]. IEEE Internet of Things Journal, 2022, 9 (17): 15497- 15510.
doi: 10.1109/JIOT.2022.3176121 |
25 |
FRANK H , FRISCH I . Analysis and design of survivable net works[J]. IEEE Trans. on Communications, 1970, 18 (5): 501- 519.
doi: 10.1109/TCOM.1970.1090419 |
26 |
CHVATAL V . Tough graphs and hamiltonian circuits[J]. Discrete Mathematics, 1973, 5 (3): 215- 228.
doi: 10.1016/0012-365X(73)90138-6 |
27 |
MOAZZAMI D . Tenacity of a graph with maximum connectivi ty[J]. Discrete Applied Mathematics, 2011, 159 (5): 367- 380.
doi: 10.1016/j.dam.2010.11.008 |
28 |
FIEDLER M . Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973, 23 (2): 298- 305.
doi: 10.21136/CMJ.1973.101168 |
29 | HU S, ZHUO M, YANG P, et al. Research on invulnerability of spatial information networks based on improved jump-range-node method[C]//Proc. of the Space Information Network, 2021: 84-93. |
30 |
郭伟. 野战地域通信网可靠性的评价方法[J]. 电子学报, 2000, 28 (1): 3- 6.
doi: 10.3321/j.issn:0372-2112.2000.01.001 |
GUO W . Reliability evaluating method of tactical communication network[J]. Acta Electronica Sinica, 2000, 28 (1): 3- 6.
doi: 10.3321/j.issn:0372-2112.2000.01.001 |
|
31 |
饶育萍, 林竞羽, 侯德亭. 基于最短路径数的网络抗毁评价方法[J]. 通信学报, 2009, 30 (4): 113- 117.
doi: 10.3321/j.issn:1000-436X.2009.04.017 |
RAO Y P , LIN J Y , HOU D T . Evaluation method for network invulnerability based on shortest route number[J]. Journal on Communications, 2009, 30 (4): 113- 117.
doi: 10.3321/j.issn:1000-436X.2009.04.017 |
|
32 | 吴俊, 谭索怡, 谭跃进, 等. 基于自然连通度的复杂网络抗毁性分析[J]. 复杂系统与复杂性科学, 2014, 11 (1): 77- 86. |
WU J , TAN S Y , TAN Y J , et al. Analysis of invulnerability in complex networks based on natural connectivity[J]. Complex Systems and Complexity Science, 2014, 11 (1): 77- 86. | |
33 | 邵瑞瑞, 方志耕, 刘思峰, 等. 基于韧性度的低轨卫星通信网络抗毁性度量及优化[J]. 运筹与管理, 2020, 29 (7): 9- 17. |
SHAO R R , FANG Z G , LIU S F , et al. Measurement and optimization of invulnerability of low-orbit satellite communication networks based on resilience[J]. Operation Research and Management Science, 2020, 29 (7): 9- 17. | |
34 |
孙景云, 张国亭, 柳震, 等. 基于最小跳数的星座网络拓扑抗毁性分析[J]. 无线电通信技术, 2023, 49 (5): 891- 896.
doi: 10.3969/j.issn.1003-3114.2023.05.014 |
SUN J Y , ZHANG G T , LIU Z , et al. Analysis of constella tion network topology survivability based on minimum hops[J]. Radio Communications Technology, 2023, 49 (5): 891- 896.
doi: 10.3969/j.issn.1003-3114.2023.05.014 |
|
35 |
ALBERT R , HAWOONG J , ALBERT-LASZLO B . Error and attack tolerance of complex networks[J]. Nature, 2000, 406 (6794): 378- 382.
doi: 10.1038/35019019 |
36 |
MASOOMY H , ADAMI V , NAJAFI M N . Relation between the degree and between ness centrality distribution incomplex networks[J]. Physical Review E, 2023, 107 (4): 044303.
doi: 10.1103/PhysRevE.107.044303 |
37 |
YANG S Q , JIANG Y , TONG T C , et al. A method of evaluating importance of nodes in complex network based on Tsallis entropy[J]. Acta Physica Sinica, 2021, 70 (21): 216401.
doi: 10.7498/aps.70.20210979 |
38 | 陈妤, 秦威. 基于排序学习的复杂网络节点接近中心性近似排序[J]. 计算机系统应用, 2022, 31 (11): 387- 392. |
CHEN Y , QIN W . Approximate rank of closeness centrality of complex network nodes based on learning to rank[J]. Computer Systems Application, 2022, 31 (11): 387- 392. | |
39 | 宋志刚, 张雨, 张健. 基于节点收缩法的木结构建筑群火灾蔓延节点重要性评估[J]. 安全与环境学报, 2022, 22 (1): 16- 21. |
SONG Z G , ZHANG Y , ZHANG J . Evaluation of the importance of fire spreading nodes in wood structure building groups based on node shrinkage method[J]. Journal of Safety and Environment, 2022, 22 (1): 16- 21. | |
40 | 聂媛媛, 方志耕, 刘思峰, 等. 基于节点修复的低轨卫星网络动态抗毁性模型[J]. 控制与决策, 2020, 35 (5): 1247- 1252. |
NIE Y Y , FANG Z G , LIU S F , et al. Dynamic invulnerability model of LEO satellite network based on node repair[J]. Control and Decision, 2020, 35 (5): 1247- 1252. | |
41 | LAI Z Q, LI H W, LI J H. StarPerf: characterizing network performance for emerging mega-constellations[C]//Proc. of the IEEE 28th International Conference on Network Protocols, 2020. |
42 |
LIU F , WANG Z , DENG Y . GMM: a generalized mechanics model for identifying the importance of nodes in complex networks[J]. Knowledge-Based Systems, 2020, 193, 105464.
doi: 10.1016/j.knosys.2019.105464 |
43 |
WANG S S , DU Y X , DENG Y . A new measure of identifying influential nodes: efficiency centrality[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 47, 151- 163.
doi: 10.1016/j.cnsns.2016.11.008 |
44 |
YANG P , HU S , ZHOU S J , et al. A topological sensitive node importance evaluation method in aerospace information networks[J]. Sensors, 2022, 23 (1): 266.
doi: 10.3390/s23010266 |
45 | DAI C Q, XU T, TANG H, et al. Invulnerability-based constellation design in LEO satellite networks[C]//Proc. of the IEEE 22nd International Conference on Communication Technology, 2022: 428-433. |
46 |
XU X , GAO Z X , LIU A J . Robustness of satellite constella tion networks[J]. Computer Communications, 2023, 210, 130- 137.
doi: 10.1016/j.comcom.2023.07.036 |
47 |
ZHANG L , DU Y , SUN Z Y . Modeling and analysis of cascading failures in LEO satellite networks[J]. IEEE Trans. on Network Science and Engineering, 2024, 11 (1): 807- 822.
doi: 10.1109/TNSE.2023.3308610 |
48 | 赖泽祺, 王翊堃, 李贺武. 在非受控环境下的天基网络抗毁关键技术研究[C]//中国指挥与控制学会, 2022: 358-364. |
LAI Z Q, WAN Y K, LI H W. Makingspace information networks resilient in uncontrolled environments[C]//Proc. of the Chinese Institute of Command and Control, 2022: 358-364. | |
49 | OUYANG Q L, YE N, MIAO S R, et al. Mega constellation networks are reliable against geographical failure[C]//Proc. of the IEEE 98th Vehicular Technology Conference, 2023. |
50 | LAI Z Q, LI H W, WANG Y K, et al. Achieving resilient and performance-guaranteed routing in space-terrestrial integrated networks[C]//Proc. of the IEEE Conference on Computer Communications, 2023. |
51 | WANG Y, KONG C L, MENG X, et al. Systematic perfor-mance evaluation framework for LEO mega-constellation satellite networks[EB/OL]. [2024-1-22]. https://arxiv.org/abs/2401.11934. |
52 | 彭观胜. 基于自然连通度的复杂网络抗毁性优化研究[D]. 长沙: 国防科技大学, 2018. |
PENG G S. Optimizing complex network topology for robustness based on natural connectivity[D]. Changsha: National University of Defense Technology, 2018. | |
53 | DING M L, YE W, WANG C, et al. TT&C communication network survivability research methods based on simulated annealing particle swarm optimization algorithm[C]//Proc. of the 1st International Conference on Electronics Instrumentation & Information Systems, 2017. |
54 | SHAKE T, SUN J, ROYSTER T, et al. Failure resilience in proliferated low Earth orbit satellite network topologies[C]//Proc. of the IEEE Military Communications Conference, 2022: 828-834. |
55 | PENG P F, LI P, LIU Y. Research on air defense communication network of warship formation based on particle swarm optimization[C]//Proc. of the 5th International Conference on Automation, Control and Robotics Engineering, 2020: 356-362. |
56 |
LIU X F , CHEN X Q , YANG L , et al. Dynamic topology control in optical satellite networks based on algebraic connectivity[J]. Acta Astronautica, 2019, 165, 287- 297.
doi: 10.1016/j.actaastro.2019.09.011 |
57 | 戴翠琴, 许涛, 秦杰鹏, 等. 一种基于建链概率的低轨卫星星座抗毁性优化方法[P]. 中国: |
CN 202210707026.4, 2023- 09-26. DAI C Q, XU T, QIN J P, et al. A destruction resistance optimization method for low orbit satellite constellations based on chain building probability[P]. China: CN 202210707026.4, 2023-09-26. | |
58 | 齐晓鑫. 低轨卫星网络路由算法与拓扑控制策略研究[D]. 西安: 西安电子科技大学, 2023. |
QI X X. Research control on routing algorithm and topology control strategy of LEO satellite networks[D]. Xi'an: Xidian University, 2023. | |
59 |
LU Y , ZHAO Y J , SUN F C , et al. A survivable routing protocol for two-layered LEO/MEO satellite networks[J]. Wireless Networks, 2014, 20 (5): 871- 887.
doi: 10.1007/s11276-013-0656-z |
[1] | 赵蕊蕊, 于海跃, 游雅倩, 张涛, 陶敏, 姜江. 无人集群试验评估现状及技术方法综述[J]. 系统工程与电子技术, 2024, 46(2): 570-585. |
[2] | 王强, 高云翔, 杭爽, 张笔峰. 基于综合集成法的军事战略能力评估方法[J]. 系统工程与电子技术, 2023, 45(8): 2312-2317. |
[3] | 丁刚, 张琳, 崔利杰, 张亮, 李新春. 航空装备单元维修保障仿真评估方法研究[J]. 系统工程与电子技术, 2022, 44(4): 1246-1255. |
[4] | 王永攀, 苏建新, 龚明, 刘华. 面向作战的雷达全功能操作训练效果评估模型[J]. 系统工程与电子技术, 2022, 44(12): 3766-3774. |
[5] | 王双川, 胡起伟, 李锋, 王强, 冉悄然, 马云飞. 装备维修保障效能评估研究综述[J]. 系统工程与电子技术, 2019, 41(10): 2271-2278. |
[6] | 吴延勋, 秦现生, 张海峰. 基于模糊神经网络的复杂产品研发决策评估[J]. Journal of Systems Engineering and Electronics, 2011, 33(7): 1575-1579. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||