

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (10): 3411-3425.doi: 10.12305/j.issn.1001-506X.2025.10.25
• 制导、导航与控制 • 上一篇
王志豪1,2, 仲惟超3, 张皓1,2,*
收稿日期:2024-05-09
出版日期:2025-10-25
发布日期:2025-10-23
通讯作者:
张皓
作者简介:王志豪(2002—),男,硕士研究生,主要研究方向为航天器轨道动力学基金资助:Zhihao WANG1,2, Weichao ZHONG3, Hao ZHANG1,2,*
Received:2024-05-09
Online:2025-10-25
Published:2025-10-23
Contact:
Hao ZHANG
摘要:
针对低轨(low Earth orbit, LEO)巨型星座这类近圆轨道卫星自主构型保持的需求,研究一种基于非奇异轨道根数和扩展卡尔曼滤波(extended Kalman filter,EKF)的自主实时平均轨道根数估计算法。推导非球形摄动带谐项、田谐项和大气阻力摄动作用下的平均根数动力学模型,并以此建立滤波模型,设计基于EKF的自主实时平均根数估计算法。仿真结果表明,该算法可以长期应用于平均根数的在轨估计,精度相比数值迭代法和快速傅里叶变换方法可以提升一个量级,其中半长轴估计误差可达米级,而且全部轨道根数的估计误差均具有稳定性。最后将算法应用于卫星真实测量数据,验证了算法在实际工程中的可行性以及对不同轨道高度的适用性。
中图分类号:
王志豪, 仲惟超, 张皓. 低轨卫星非奇异平均根数估计算法研究[J]. 系统工程与电子技术, 2025, 47(10): 3411-3425.
Zhihao WANG, Weichao ZHONG, Hao ZHANG. Nonsingular mean elements estimation algorithm for LEO satellites[J]. Systems Engineering and Electronics, 2025, 47(10): 3411-3425.
表1
初始时刻经典瞬时根数和非奇异瞬时根数"
| 瞬时轨道根数 | 数值 |
| − | |
表2
动力学模型相关参数"
| 参数 | 数值 |
| 地球平均半径 | |
| 引力常数 | |
| 标高 | 83.7 |
| 大气密度 | |
| 阻力系数 | 2.2 |
| 卫星质量m/kg | 100 |
| 迎风面积 | |
| 地球角速度 |
表3
各轨道根数过程噪声方差值"
| 轨道根数过程噪声方差 | 数值 |
表4
瞬时轨道根数测量噪声方差值"
| 轨道根数测量噪声方差 | 数值 |
表5
单次仿真稳定估计误差"
| 误差 | EKF | 数值迭代法 | FFT |
表7
蒙特卡罗模拟的估计误差标准差值"
| 标准差 | EKF | 数值迭代法 | FFT |
| 7 |
GONG Y P, LI A S, PENG X. Geometrical design method of Walker constellation in non-terrestrial network[J]. Acta Astronautica, 2024, 219, 618- 626.
doi: 10.1016/j.actaastro.2024.03.069 |
| 8 |
XU Y, ZHANG Y L, FAN L. Autonomous semi-major axis adjustment for mega constellation continuous coverage[J]. Advances in Space Research, 2024, 73 (11): 5582- 5594.
doi: 10.1016/j.asr.2023.07.016 |
| 9 | 刘奇, 向开恒, 赵书阁, 等. 一种低轨星座高精度相位保持方法[J]. 宇航学报, 2021, 42 (11): 1378- 1384. |
| LIU Q, XIANG K H, ZHAO S G, et al. A high-precision phase keeping method for LEO constellation[J]. Journal of Astronautics, 2021, 42 (11): 1378- 1384. | |
| 10 |
MONTERO M A, SCALA F, COLOMBO C. Manoeuvre planning algorithm for satellite formations using mean relative orbital elements[J]. Advances in Space Research, 2023, 71 (1): 585- 603.
doi: 10.1016/j.asr.2022.09.043 |
| 11 | 刘幸川, 陈丹鹤, 徐根, 等. 卫星编队脉冲机动维持控制与策略[J]. 系统工程与电子技术, 2023, 45 (8): 2533- 2545. |
| LIU X C, CHEN D H, XU G, et al. Control and strategy for satellites formation maintenance with impulsive maneuver[J]. Systems Engineering and Electronics, 2023, 45 (8): 2533- 2545. | |
| 12 |
孙俞, 沈红新. 基于TLE的低轨巨型星座控制研究[J]. 力学与实践, 2020, 42 (2): 156- 162.
doi: 10.6052/1000-0879-20-044 |
|
SUN Y, SHEN H X. The control of mega-constellation at low Earth orbit based on TLE[J]. Mechanics in Engineering, 2020, 42 (2): 156- 162.
doi: 10.6052/1000-0879-20-044 |
|
| 13 | 刘林, 汤靖师. 卫星轨道理论与应用[M]. 北京: 电子工业出版, 2022. |
| LIU L, TANG J S. Satellite orbit theory and application[M]. Beijing: Publishing House of Electronics Industry, 2022. | |
| 14 |
KOZAI Y. The motion of a close earth satellite[J]. The Astronomical Journal, 1959, 64, 367- 377.
doi: 10.1086/107957 |
| 1 |
KLINKARD H. Large satellite constellations and related challenges for space debris mitigation[J]. Journal of Space Safety Engineering, 2017, 4 (2): 59- 60.
doi: 10.1016/j.jsse.2017.06.002 |
| 2 | 刘奇, 张弫, 饶建兵, 等. 低轨星座构型保持研究现状与分析[J]. 系统工程与电子技术, 2023, 45 (8): 2562- 2569. |
| LIU Q, ZHANG Z, RAO J B, et al. Research status and analysis of configuration maintenance of LEO constellation[J]. Systems Engineering and Electronics, 2023, 45 (8): 2562- 2569. | |
| 3 |
PORTILLO I D, CAMERON B G, CRAWLEY E F. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband[J]. Acta Astronautica, 2019, 159, 123- 135.
doi: 10.1016/j.actaastro.2019.03.040 |
| 4 |
REILAND N, ROSENGREN A J, MALHOTRA R, et al. Assessing and minimizing collisions in satellite mega constellations[J]. Advances in Space Research, 2021, 67 (11): 3755- 3774.
doi: 10.1016/j.asr.2021.01.010 |
| 5 |
ABASHIDZE A, CHERNYKH I, MEDNIKOVA M. Satellite constellations: International legal and technical aspects[J]. Acta Astronautica, 2022, 196, 176- 185.
doi: 10.1016/j.actaastro.2022.04.019 |
| 6 |
SHEN H X, HUANG A Y, ZHANG T J, et al. Novel orbit control approach for earth observation with multiple targets[J]. Journal of Guidance, Control, and Dynamic, 2022, 45 (6): 1153- 1161.
doi: 10.2514/1.G006409 |
| 15 |
BROUWER D. Solution of the problem of artificial satellite theory without drag[J]. The Astronomical Journal, 1959, 64, 378- 396.
doi: 10.1086/107958 |
| 16 | CEFOLA P. A recursive formulation for the tesseral disturbing function in equinoctial variables[C]//Proc. of the AIAA/AAS Astrodynamics Conference, 1976. |
| 17 | SCHAUB H, JUNKINS J L. Analytical mechanics of aerospace systems[M]. Reston: American Institute of Aeronautics and Astronautics, 2018: 883−886. |
| 18 |
ELY T A. Transforming mean and osculating elements using numerical methods[J]. The Journal of the Astronautical Sciences, 2015, 62, 21- 43.
doi: 10.1007/s40295-015-0036-2 |
| 19 |
LI L C, ZHANG J R, ZHAO S G, et al. Autonomous onboard estimation of mean orbital elements for geostationary electric propulsion satellites[J]. Aerospace Science and Technology, 2019, 94, 105369.
doi: 10.1016/j.ast.2019.105369 |
| 20 |
SHEN H X, KUAI Z Z, LI H N. Propagation and transformation of mean elements at geostationary orbits[J]. Journal of Guidance Control, and Dynamics, 2019, 42 (9): 2132- 2142.
doi: 10.2514/1.G003654 |
| 21 |
ZHONG W C, GURFIL P. Mean orbital elements estimation for autonomous satellite guidance and orbit control[J]. Journal of Guidance, Control, and Dynamics, 2013, 36 (6): 1624- 1641.
doi: 10.2514/1.60701 |
| 22 | 仲惟超. 卫星集群导航与轨道控制方法研究[D]. 哈尔滨: 哈尔滨工业大学航天学院, 2014. |
| ZHONG W C. Research on the orbit navigation and control of the satellite cluster[D]. Harbin: Harbin Institute of Technology, 2014. | |
| 23 | SPIRIDONOVA S, KIRSCHNER M. Precise mean orbital elements determination for LEO monitoring and maintenance[C]// Proc. of the International Symposium on Space Flight Dynamics, 2014. |
| 24 | LI H N. Geostationary satellites collocation[M]. Beijing: National Defense Industry Press, 2014. |
| 25 |
ELY T A. Mean element propagations using numerical averaging[J]. The Journal of the Astronautical Sciences, 2014, 61, 275- 304.
doi: 10.1007/s40295-014-0020-2 |
| 26 |
TASIF H T, HIPPELHEUSER J E, ELGOHARY T A. Analytic continuation extended Kalman filter framework for perturbed orbit estimation using a network of space-based observers with angles-only measurements[J]. Astrodynamics, 2022, 6, 161- 187.
doi: 10.1007/s42064-022-0138-0 |
| 27 |
HAJIYEV C, CILDEN D, SOMOV Y. Gyro-free attitude and rate estimation for a small satellite using SVD and EKF[J]. Aerospace Science and Technology, 2016, 55, 324- 331.
doi: 10.1016/j.ast.2016.06.004 |
| 28 | USTINOV B. Motion of satellites along low-eccentricity orbits in a noncentral terrestrial gravitational field[J]. Cosmic Research, 1967, 5, 158- 159. |
| 29 | ECKSTEIN M, HECHLER H. A reliable derivation of the perturbations due to any zonal and tesseral harmonics of the geopotential for nearly-circular satellite orbits[J]. Paris: European Space Research Organization, 1970, |
| 30 |
杨志涛, 刘静, 刘林. 轨道分析解的改进方法及其应用[J]. 系统工程与电子技术, 2020, 42 (2): 427- 433.
doi: 10.3969/j.issn.1001-506X.2020.02.23 |
|
YANG Z T, LIU J, LIU L. Improved method of orbit analytical solution and its application[J]. Systems Engineering and Electronics, 2020, 42 (2): 427- 433.
doi: 10.3969/j.issn.1001-506X.2020.02.23 |
|
| 31 | 温生林, 闫野, 张华. 低轨回归轨道卫星轨迹漂移特性分析与控制[J]. 系统工程与电子技术, 2015, 37 (3): 613- 619. |
| WEN S L, YAN Y, ZHANG H. Analysis and control of ground track drift for recursive low earth orbit satellites[J]. Systems Engineering and Electronics, 2015, 37 (3): 613- 619. | |
| 32 |
PONTANI M, PUSTORINO M, TEOFILATTO P. Mars constellation design and low-thrust deployment using nonlinear orbit control[J]. The Journal of the Astronautical Sciences, 2022, 69, 1691- 1725.
doi: 10.1007/s40295-022-00352-w |
| 33 |
MIKHAILOV P S, KONESHOV V, POGORELOV V V, et al. High-degree models of the earth’s gravity field: history of development, assessment of prospects and resolution[J]. Seismic Instruments, 2021, 57, 446- 461.
doi: 10.3103/S0747923921040083 |
| 34 |
ARNAS D. Linearized model for satellite station-keeping and tandem formations under the effects of atmospheric drag[J]. Acta Astronautica, 2021, 178, 835- 845.
doi: 10.1016/j.actaastro.2020.10.035 |
| 35 | ANDREW J T, WU X F. LEO satellite formation flying via differential atmospheric drag[J]. International Journal of Space Science and Engineering, 2020, 5 (4): 289- 320. |
| 36 |
XU G C, XU T H, WU C, et al. Analytical solution of a satellite orbit disturbed by atmospheric drag[J]. Monthly Notices of the Royal Astronomical Society, 2011, 410 (1): 654- 662.
doi: 10.1111/j.1365-2966.2010.17471.x |
| 37 |
LEONARD C L, HOLLISTER W M, BERGMANN E V. Orbital formationkeeping with differential drag[J]. Journal of Guidance, Control, and Dynamics, 1989, 12 (1): 108- 113.
doi: 10.2514/3.20374 |
| 38 |
KAN Z Y, SONG N N, PENG H J, et al. Extension of complex step finite difference method to Jacobian-free Newton-Krylov method[J]. Journal of Computational and Applied Mathematics, 2022, 399, 113732.
doi: 10.1016/j.cam.2021.113732 |
| 39 | SAUER T. Numerical analysis[M]. London: Pearson, 2017. |
| 40 | PACHLER N, PORTILLO L D, CRAWLEY E F, et al. An updated comparison of four low earth orbit satellite constellation systems to provide global broadband[C]//Proc. of the IEEE International Conference on Communications Workshops, 2021. |
| 41 |
MAO X Y, WANG W B, GAO Y. Precise orbit determination for low Earth orbit satellites using GNSS: observations, models, and methods[J]. Astrodynamics, 2024, 8, 349- 374.
doi: 10.1007/s42064-023-0195-z |
| [1] | 杨华果, 陈全, 杨磊, 尹政龙, 赵勇. 低轨巨型星座网络抗毁性研究进展与展望[J]. 系统工程与电子技术, 2025, 47(6): 2025-2035. |
| [2] | 胡洋, 刘学超, 李化义, 曹芊. 多星姿态协同中的几何鲁棒控制[J]. 系统工程与电子技术, 2024, 46(9): 3118-3127. |
| [3] | 刘正洋, 周丽, 张瑞. 随机参数摄动下的高超声速飞行器姿态控制[J]. 系统工程与电子技术, 2024, 46(2): 703-714. |
| [4] | 陈炳龙, 王磊, 刘帮, 周衡. 基于太阳导行镜测量的高精度姿态确定算法[J]. 系统工程与电子技术, 2024, 46(1): 245-253. |
| [5] | 董一平, 刘宁, 苏中, 王靖骁, 白宏阳. 基于AEKF的高速自旋飞行体组合导航方法[J]. 系统工程与电子技术, 2022, 44(6): 1977-1983. |
| [6] | 李文华, 汪立新, 沈强, 李灿, 吴宗收. 基于鲁棒EKF的MEMS-INS/GNSS/VO组合导航方法[J]. 系统工程与电子技术, 2022, 44(6): 1994-2000. |
| [7] | 王琪, 廖志忠, 燕飞. 基于概率数据关联的雷达导引头抗速度拖引干扰算法[J]. 系统工程与电子技术, 2022, 44(2): 448-454. |
| [8] | 刘艺, 周晓雄, 程广俊. 高动态跳频载波跟踪技术[J]. 系统工程与电子技术, 2022, 44(2): 677-683. |
| [9] | 孙照强, 王志贵, 孟飞, 李陆雨, 于中, 陈燕. 基于EKF及弹道方程的弹道目标跟踪滤波器设计[J]. 系统工程与电子技术, 2022, 44(10): 3207-3212. |
| [10] | 廖志忠, 王琪. 雷达导引头指向误差对导弹制导的影响与对策[J]. 系统工程与电子技术, 2021, 43(2): 519-525. |
| [11] | 王晓龙, 刘海颖, 王景琪. 基于分层SLAM的空地多智能体协同导航[J]. 系统工程与电子技术, 2020, 42(1): 166-171. |
| [12] | 袁国刚, 王永川, 陈鹏, 高喜俊. 基于DEKF联合估计的CD3S信号解调算法[J]. 系统工程与电子技术, 2018, 40(9): 2119-2123. |
| [13] | 陆志毅, 李相平, 陈麒, 邹小海. 基于粒子群优化的卡尔曼滤波去耦算法[J]. 系统工程与电子技术, 2018, 40(4): 751-755. |
| [14] | 胡志恒, 周荻, 邹昕光. 拦截导弹的制导律辨识与弹道预报[J]. 系统工程与电子技术, 2018, 40(3): 609-614. |
| [15] | 贾舒宜, 王子玲, 唐田田. 距离-速度同步欺骗干扰下的机动目标跟踪算法[J]. 系统工程与电子技术, 2017, 39(9): 1942-1949. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||