系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (7): 2269-2275.doi: 10.12305/j.issn.1001-506X.2024.07.10
• 传感器与信号处理 • 上一篇
王彩云1,*, 张慧雯1, 王佳宁2, 吴钇达1, 常韵1
收稿日期:
2023-05-16
出版日期:
2024-06-28
发布日期:
2024-07-02
通讯作者:
王彩云
作者简介:
王彩云(1975—), 女, 副教授, 博士, 主要研究方向为雷达信号处理、雷达目标检测与识别基金资助:
Caiyun WANG1,*, Huiwen ZHANG1, Jianing WANG2, Yida WU1, Yun CHANG1
Received:
2023-05-16
Online:
2024-06-28
Published:
2024-07-02
Contact:
Caiyun WANG
摘要:
针对弹道目标雷达信号易受环境影响、目标识别准确率低的问题, 提出了一种基于双树复小波变换(dual-tree complex wavelet transform, DTCWT)和变分自编码器(variational autoencoder, VAE)的弹道目标雷达散射截面(radar cross section, RCS)识别法。首先, 采用DTCWT对弹道目标RCS动态数据进行预处理, 再利用VAE提取目标的隐变量特征, 最后用支持向量机(support vector machine, SVM)分类器进行识别。实验结果表明, 与已有方法相比, 该方法具有更高的识别概率, 且鲁棒性较好。
中图分类号:
王彩云, 张慧雯, 王佳宁, 吴钇达, 常韵. 基于DTCWT-VAE的弹道中段目标RCS识别[J]. 系统工程与电子技术, 2024, 46(7): 2269-2275.
Caiyun WANG, Huiwen ZHANG, Jianing WANG, Yida WU, Yun CHANG. Ballistic midcourse target RCS recognition based on DTCWT-VAE[J]. Systems Engineering and Electronics, 2024, 46(7): 2269-2275.
1 | LI C W, XIE B, PEI Y. A RCS periodicity extraction algorithm for ballistic target[C]//Proc. of the International Conference on Image, Vision and Intelligent Systems, 2022: 1207-1216. |
2 |
ZHAO C C , WANG L , LIU Y M . Ballistic target recognition based on 4-D point cloud using randomized stepped frequency radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 58 (6): 5711- 5729.
doi: 10.1109/TAES.2022.3178971 |
3 | 胡玉颖, 刘丙杰, 马子涵. 美国反导系统预警雷达网能力分析[J]. 舰船电子工程, 2022, 42 (4): 11-13, 25. |
HU Y Y , LIU B J , MA Z H . Analysis of early warning radar network capabilities of U.S. anti-missile systems[J]. Ship Elec-tronic Engineering, 2022, 42 (4): 11-13, 25. | |
4 | 韩晋山, 邢建平, 张浩, 等. 美国导弹预警系统的发展现状与趋势分析[J]. 科技导报, 2019, 37 (4): 91- 95. |
HAN J S , XING J P , ZHANG H , et al. Development of American missile early warning system[J]. Science & Technology Review, 2019, 37 (4): 91- 95. | |
5 | SCHULTZ K, DAVIDSON S, STEIN A, et al. Range Doppler laser radar for midcourse discrimination-the firefly experiments[C]//Proc. of the Annual Interceptor Technology Conference, 1993. |
6 | 黄小红, 马云, 陈曾平. 利用RCS序列估计空间目标尺寸的方法研究[J]. 信号处理, 2005, 21 (6): 639- 641. |
HUANG X H , MA Y , CHEN Z P . Research on size of space object estimated from RCS[J]. Journal of Signal Processing, 2005, 21 (6): 639- 641. | |
7 | 冯德军, 王雪松, 徐振海, 等. 基于ESPRIT的中段弹道目标特征提取方法[J]. 国防科技大学学报, 2004, 26 (2): 41- 45. |
FENG D J , WANG X S , XU Z H , et al. A study of the midcourse ballistic target signatures extracting based on ESPRIT[J]. Journal of National University of Defense Technology, 2004, 26 (2): 41- 45. | |
8 | 陈行勇, 黎湘, 郭桂蓉, 等. 微进动弹道导弹目标雷达特征提取[J]. 电子与信息学报, 2006, 28 (4): 643- 646. |
CHEN H Y , LI X , GUO G R , et al. Radar feature extraction of micro-precession ballistic missile warhead[J]. Journal of Electronics & Information Technology, 2006, 28 (4): 643- 646. | |
9 |
GUO C , HE Y , WANG H P , et al. Radar HRRP target recognition based on deep one-dimensional residual-inception network[J]. IEEE Access, 2019, 7, 9191- 9204.
doi: 10.1109/ACCESS.2019.2891594 |
10 | XIANG Q , WANG X D , LAI J , et al. Multi-scale group-fusion convolutional neural network for high-resolution range profile target recognition[J]. IET Radar, Sonar & Navigation, 2022, 16 (12): 1997- 2016. |
11 |
LI X X , YAO H Y , SUN W F . A new compensation method of HRRP for ballistic targets[J]. Advanced Materials Research, 2013, 756-759, 3860- 3864.
doi: 10.4028/www.scientific.net/AMR.756-759.3860 |
12 |
PERSICO A R , ILIOUDIS C V , CLEMENTE C , et al. Novel classification algorithm for ballistic target based on HRRP frame[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 55 (6): 3168- 3189.
doi: 10.1109/TAES.2019.2905281 |
13 | UVANNI L A, RAINEY T G, BALASUBRAMANIAN U, et al. Neural network for intelligent query of an FBI forensic database[C]//Proc. of the Command, Control, Communications, and Intelligence Systems for Law Enforcement, 1997: 16-19. |
14 | 李文臣, 王涛, 王雪松, 等. 旋转对称目标章动参数全极化测量研究[J]. 兵工学报, 2010, 31 (8): 1041- 1047. |
LI W C , WANG T , WANG X S , et al. Research on fully polarization measurement of nutation parameters of rotary symmetric target[J]. Acta Armamentarii, 2010, 31 (8): 1041- 1047. | |
15 | CHENG X, LIU Y, LI Y Z, et al. Ballistic target discrimination based on polarimetric entropy[C]//Proc. of the IEEE CIE International Conference on Radar, 2011: 1390-1393. |
16 | YANG H , ZHANG Y S , DING W Z . A fast recognition method for space targets in ISAR images based on local and global structural fusion features with lower dimensions[J]. International Journal of Aerospace Engineering, 2020, 2020, 3412582. |
17 | SUN J J , TONG C M , ZHANG M M . Feature extraction of ballistic midcourse target from ISAR imaging[J]. ICIC Express Letters, 2015, 9 (6): 1769- 1776. |
18 |
JIN G H , GAO X Z , DONG Z . Two-dimensional length extraction of ballistic target from ISAR images using a new scaling method by affine registration[J]. Defence Science Journal, 2014, 64 (5): 458- 463.
doi: 10.14429/dsj.64.5001 |
19 |
PALADINI R , MARTORELLA M , BERIZZI F . Classification of man-made targets via invariant coherency-matrix eigenvector decomposition of polarimetric SAR/ISAR images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (8): 3022- 3034.
doi: 10.1109/TGRS.2011.2116121 |
20 | TANG W B, YU L, WEI Y S, et al. Radar target recognition of ballistic missile in complex scene[C]//Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019. |
21 | CAI T T, SHENG Y J, HE Z, et al. Classification and recognition of ballistic microcephalus based on deep neural network[C]//Proc. of the International Applied Computational Electromagnetics Society Symposium, 2019. |
22 |
PERSICO A R , CLEMENTE C , GAGLIONE D , et al. On model, algorithms, and experiment for micro-Doppler-based recognition of ballistic targets[J]. IEEE Trans.on Aerospace and Electronic Systems, 2017, 53 (3): 1088- 1108.
doi: 10.1109/TAES.2017.2665258 |
23 |
SUN H X , ZHENG L , NING X . Ballistic missile warhead recognition based on micro-Doppler frequency[J]. Defence Science Journal, 2008, 58 (6): 705- 709.
doi: 10.14429/dsj.58.1697 |
24 | YAO H Y, LI X X, SUN W F, et al. Micro-Doppler analysis of nutation target in ballistic midcourse[C]//Proc. of the IET International Radar Conference, 2013. |
25 |
SHENG J . Target identity recognition method based on RCS distribution and spatial location[J]. Procedia Computer Science, 2019, 147, 632- 637.
doi: 10.1016/j.procs.2019.01.192 |
26 | WEN B Q, WANG T, CHENG K. Simulation research on dynamic RCS characteristics of cruise missile[C]//Proc. of the IOP Conference Series: Earth and Environmental Science, 2019, 300(2): 022170. |
27 | LEI X H, FU X J, WANG C, et al. Statistical feature selection of narrowband RCS sequence based on greedy algorithm[C]//Proc. of the IEEE CIE International Conference on Radar, 2011: 1664-1667. |
28 |
WEI N , ZHANG L M , ZHANG X G . A weighted decision-level fusion architecture for ballistic target classification in midcourse phase[J]. Sensors, 2022, 22 (17): 6649.
doi: 10.3390/s22176649 |
29 | CHOI I O , PARK S H , KIM M , et al. Efficient discrimination of ballistic targets with micromotions[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 56 (2): 1243- 1261. |
30 | YANG L, ZHANG W P, JIANG W D. Ballistic target recognition based on deep learning by utilizing the micro-Doppler feature[C]//Proc. of the IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference, 2022: 1628-1632. |
31 | SHI D Y, LIN Q, HU B, et al. Research on radar target recognition method based on deep learning[C]//Proc. of the International Conference on Artificial Intelligence, Virtual Reality, and Visualization, 2021: 82-89. |
32 | LI S Y, YANG T, LI M M, et al. Inertia ratio parameter extraction of typical ballistic target based on deep learning[C]//Proc. of the International Applied Computational Electromagnetics Society Symposium, 2021. |
33 |
XU X G , FENG C Q , HAN L X . Classification of radar targets with micro-motion based on RCS sequences encoding and convolutional neural network[J]. Remote Sensing, 2022, 14 (22): 5863.
doi: 10.3390/rs14225863 |
34 |
李江, 冯存前, 王义哲, 等. 基于深度学习的弹道目标智能分类[J]. 系统工程与电子技术, 2020, 42 (6): 1226- 1234.
doi: 10.3969/j.issn.1001-506X.2020.06.04 |
LI J , FENG C Q , WANG Y Z , et al. Intelligent classification of ballistic targets based on deep learning[J]. Systems Engineering and Electronics, 2020, 42 (6): 1226- 1234.
doi: 10.3969/j.issn.1001-506X.2020.06.04 |
|
35 | 郭继光, 李奇峰. 基于迁移学习的小样本弹道导弹目标识别方法[J]. 中国电子科学研究院学报, 2022, 17 (7): 626- 634. |
GUO J G , LI Q F . Research on ballistic missile target recognition based on transfer learning for small samples[J]. Journal of China Academy of Electronics and Information Technology, 2022, 17 (7): 626- 634. | |
36 |
王彩云, 黄盼盼, 李晓飞, 等. 基于AEPSO-SVM算法的雷达HRRP目标识别[J]. 系统工程与电子技术, 2019, 41 (9): 1984- 1989.
doi: 10.3969/j.issn.1001-506X.2019.09.10 |
WANG C Y , HUANG P P , LI X F , et al. Radar HRRP target recognition based on AEPSO-SVM algorithm[J]. Systems Engineering and Electronics, 2019, 41 (9): 1984- 1989.
doi: 10.3969/j.issn.1001-506X.2019.09.10 |
|
37 |
SELESNICK I W , BARANIUK R G , KINGSBURY N G . The dual tree complex wavelet transform[J]. IEEE Signal Processing Magazine, 2005, 22 (6): 123- 151.
doi: 10.1109/MSP.2005.1550194 |
38 | KARINE A, TOUMI A, KHENCHAF A, et al. A non-Gaussian statistical modeling of SIFT and DTCWT for radar target recognition[C]//Proc. of the IEEE/ACS 13th International Conference of Computer Systems and Applications, 2016. |
39 |
Al-NAAMI B , FRAIHAT H , Al-NABULSI J , et al. Assessment of dual-tree complex wavelet transform to improve SNR in collaboration with neuro-fuzzy system for heart-sound identification[J]. Electronics, 2022, 11 (6): 938.
doi: 10.3390/electronics11060938 |
40 | KINGMA D P, WELLING M. Auto-encoding variational Bayes[C]//Proc. of the International Conference on Learning, 2014. |
[1] | 吴钇达, 王彩云, 王佳宁, 李晓飞. 基于ISVM-DS的红外多传感器融合识别方法[J]. 系统工程与电子技术, 2024, 46(5): 1555-1560. |
[2] | 曾舒雅, 饶彬. 基于动力学守恒定律的弹道目标关联方法[J]. 系统工程与电子技术, 2024, 46(2): 684-691. |
[3] | 王湖升, 陈伯孝, 叶倾知. 基于箔条干扰实测数据的对抗方法研究[J]. 系统工程与电子技术, 2023, 45(7): 2010-2021. |
[4] | 王哲昊, 简涛, 黄晓冬, 王海鹏, 刘瑜. 基于角域特征PSO的海面目标HRRP识别方法[J]. 系统工程与电子技术, 2023, 45(6): 1642-1650. |
[5] | 黄瀚仪, 胡仕友, 郭胜龙, 李珊君, 舒勤. 基于稀疏分解的海面微动目标识别[J]. 系统工程与电子技术, 2023, 45(4): 1016-1023. |
[6] | 李英俊, 刘永祥, 田彪, 张文鹏. 基于IRLS的跳频模式下GTD散射参数提取和RCS重构[J]. 系统工程与电子技术, 2023, 45(3): 678-689. |
[7] | 赵庆媛, 赵志强, 叶春茂, 鲁耀兵. 基于自注意力的双波段预警雷达微动融合识别[J]. 系统工程与电子技术, 2023, 45(3): 708-716. |
[8] | 刘丹阳, 吴堃, 朱永锋, 张永杰, 周剑雄. 地面目标HRRP识别的稳健性特征选择方法[J]. 系统工程与电子技术, 2023, 45(12): 3726-3733. |
[9] | 周剑雄, 朱永锋, 陈冀, 吴宏铭, 吴堃, 张永杰. SAR图像辅助的雷达目标距离像检测识别[J]. 系统工程与电子技术, 2023, 45(11): 3428-3436. |
[10] | 王宏安, 黄达, 张伟, 潘晔, 王祥丰, 邵怀宗, 顾杰. 基于DSGD的分布式电磁目标识别[J]. 系统工程与电子技术, 2023, 45(10): 3024-3031. |
[11] | 刘佳, 徐群玉, 陈唯实. 无人机雷达航迹运动特征提取及组合分类方法[J]. 系统工程与电子技术, 2023, 45(10): 3122-3131. |
[12] | 谢拥军, 高杰, 武沛羽, 牛立强. 有源RCS及其应用[J]. 系统工程与电子技术, 2022, 44(8): 2468-2473. |
[13] | 王彩云, 吴钇达, 王佳宁, 马璐, 赵焕玥. 基于改进的CNN和数据增强的SAR目标识别[J]. 系统工程与电子技术, 2022, 44(8): 2483-2487. |
[14] | 孙晶明, 虞盛康, 孙俊. 基于元学习的雷达小样本目标识别方法及改进[J]. 系统工程与电子技术, 2022, 44(6): 1839-1845. |
[15] | 周晓玲, 张朝霞, 鲁雅, 王倩, 王琨琨. 基于改进R-FCN的SAR图像识别[J]. 系统工程与电子技术, 2022, 44(4): 1202-1209. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||